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Towards the Development of Tropolone Natural Product Derivatives as Novel, Potent 

Anticancer Therapeutics that Selectively Target Histone Deacetylase (HDAC) Enzymes 

Sophia Nnenna Ononye, Ph.D. 

University of Connecticut 2013 

Cancer is the second leading cause of death in the United States.  Inhibitors that 

target key enzymes involved in epigenetic alterations, particularly histone deacetylases 

(HDACs), are garnering interest in cancer research because of their unique ability to 

reversibly induce terminal differentiation of transformed cells by influencing chromatin 

structure.  Through an in-house collaborative effort, derivatives of hinokitiol, a troplone-

related non-benzenoid aromatic compound, are being synthesized and characterized by 

the Wright and Anderson laboratories as HDAC inhibitors (HDACi). Given the novelty of 

these tropolones as antineoplastic agents, a number of biochemical and functional 

studies were conducted in order to develop tropolones as isoform-selective HDACi with 

potent antitumor properties. These studies include:  (1) Elucidation of HDAC enzymatic 

activity and inhibition, (2) Comparative analyses of antiproliferative effects in a panel of 

normal dermal fibroblasts, solid tumor and hematological cell lines, (3) Evaluation of 

induction and mechanisms of cell death by apoptosis, (4) Assessment of histone and 

tubulin modulation, and (5) Investigation of specific gene expression. Ultimately, the 

knowledge garnered from these studies will be used to develop a new library of isoform-

selective HDAC inhibitors with a wider therapeutic index for the treatment of both solid 

tumors and hematological malignancies.  
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Chapter 1  

Cancer: A Global Disease Burden 

A. Introduction 

Cancer, alternatively known as malignant tumors or malignant 

neoplasms, is a generic term that refers to a large group of more than 100 

diseases that are generally characterized by uncontrolled growth and spread 

of abnormal cells (1-5). Colloquially, cancer is used to describe malignant 

tumors that are typically invasive and metastatic but tumors can also be 

benign in which the abnormal cell growth is localized and noninvasive (1). 

Globally, cancer accounted for 7.6 million deaths (approximately 13% of all 

deaths) in 2008 with 70% of these cancer deaths occurring in low- and 

middle-income countries (4). The World Health Organization (WHO) projects 

a continuous increase in cancer deaths worldwide with an estimated 13.1 

million deaths in 2030 primarily due to late detection and treatment of most 

cancers in developing countries (3, 4). 

There are six important factors, known as the hallmarks of cancer that 

are required for cancer development and tumor progression: limitless 

replicative potential, blocking of apoptosis and differentiation as well as the 

stimulation of angiogenesis, proliferation, and metastasis (1, 6, 7). These 

cancer hallmarks are regulated by epigenetic mechanisms including histone 

acetylation which will be discussed in detail in subsequent chapters. 
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However, it should be noted that the primary cause of cancer deaths is the 

process of metastasis by which abnormal cells in malignant tumors rapidly 

invade and spread to other organs (1, 7).  

B. Classification of cancers 

Most tumors can be classified according to their origin into four major 

groups: epithelial, mesenchymal, neuroectodermal and mesenchymal (1). 

However, it should be noted that not all tumors fall neatly into these four 

categories. Examples include melanomas which are derived from pigmented 

skin cells known as melanocytes and small-cell lung carcinomas (SCLCs). 

Yet, more than 80% of all cancers are carcinomas that arise from the 

epithelial cell layers of the skin, lungs, gastrointestinal (GI) tract, mammary 

glands, and other organs (1). Most carcinomas fall into two major groups, 

squamous cell carcinomas and adenocarcinomas. Squamous cell carcinomas 

refer to tumors that arise from epithelial cells forming the protective cell layers 

such as in the skin and the esophagus. Conversely, many epithelia that 

contain specialized cells that secrete substances into the cavities they line 

such as the lung, stomach & colon generate adenocarcinomas. The 

remainders of malignant tumors arise from nonepithelial tissues throughout 

the body and are divided into 3 major groups: sarcomas, neuroectodermal 

tumors, and hematopoietic cancers. Sarcomas, including osteosarcomas and 

liposarcomas, are derived from mesenchymal cells and constitute only about 
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1% of all tumors (1). Tumors that arise from the central & peripheral nervous 

systems are known as neuroectodermal tumors and include gliomas, 

glioblastomas and neuroblastomas. While comprising only about 1% of 

cancers, they make up 2.5% of cancer-related deaths (1). 

Cancers that make up the hematopoietic or blood-forming tissues 

include leukemias and lymphomas, a focal point of this dissertation. 

Leukemias refer to malignant derivatives of hematopoietic cell lineages that 

move freely through the circulation and unlike red blood cells are 

nonpigmented. Alternatively, lymphomas refer to tumors of the lymphoid 

lineages which yield B and T lymphocytes that aggregate to form solid 

masses instead of the dispersed, single-cell populations of tumor cells 

typically associated with leukemias. In 2008, the International Agency for 

Research on Cancer (IARC), a part of the WHO, developed a new 

classification of tumors of hematopoietic and lymphoid tissues into five broad 

categories (8, 9): mature B-cell neoplasms, mature T-cell and NK-cell (natural 

killer) neoplasms, Hodgkin lymphoma, histiocytic and dendritic cell 

neoplasms, and posttransplantation lymphoproliferative disorders (PTLDs). 

Mycosis fungoides (MF) is the most common form of about 15 sub-types of 

skin tumors collectively known as cutaneous T-cell lymphoma (CTCL), a 

mature T-cell neoplasm that will be discussed at length in this dissertation 

(10). 
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Each cancer type is further described by a numerical staging system 

that describes the severity of a patient’s cancer based on the extent of the 

primary tumor (11). The TNM system, arguably the most widely used staging 

system for cancer combines a numerical staging system (0-IV) to describe the 

extent of a tumor (T), the extent of spread to the lymph nodes (N), and the 

presence of distant metastasis (M).  A number is added to each letter to 

indicate the size or extent of the primary tumor and the extent of cancer 

spread. Stage 0 [Carcinoma in situ (CIS)], stage I-III (higher numbers indicate 

more extensive disease) and stage IV (the cancer has spread to another 

organ(s)). It should be noted that CIS are considered precursors of cancer 

that may, if left untreated for a long duration, transform into a malignant 

neoplasm. Alternatively, many cancer registries, such as the NCI’s-National 

Cancer Institute-Surveillance, Epidemiology, and End Results Program 

(SEER), use summary staging for all types of cancer into five main categories 

(11): 

1. In situ: Abnormal cells are present only in the layer of cells in which they 
developed. 

2. Localized: Cancer is limited to the organ in which it began, without 
evidence of spread. 

3. Regional: Cancer has spread beyond the primary site to nearby lymph 
nodes or organs and tissues. 

4. Distant: Cancer has spread from the primary site to distant organs or 
lymph nodes. 

5. Unknown: Insufficient information for accurate stage determination. 
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C. Epidemiology of cancer 

Cancer is the second leading cause of death in the United States and 

a major cause of death worldwide (2-5). According to IARC reports (3), 5.6 

million (44%) of the 12.7 million new cases of cancer worldwide in 2008 

occurred in economically developed countries whereas 7.1 million (56%) 

occurred in economically developed countries; however, of the 7.6 million 

cancer deaths in 2008, 2.8 million (37%) were in developed countries 

whereas 4.8 million (63%) were in developing countries. Globally, the three 

leading causes of cancer deaths in men are lung, liver and stomach cancers 

and concurrently breast, lung and colorectal cancers for women. In 

developing countries, the three leading causes of cancer-related deaths in 

men are lung, liver and stomach cancers whereas the three leading causes of 

cancer-related deaths in women are breast, cervical and lung cancers.  

Alternatively, in developed countries, the three leading causes of cancer-

related deaths in men are lung, colorectal and prostate cancers whereas the 

three leading causes of cancer-related deaths in women are breast, lung and 

colorectal cancers.  

Cancer mortality rates for the US mirrors that of other developed 

countries. In 2012, the estimated US cancer deaths in men were attributed to 

lung cancer (29%), prostate cancer (9%) and colorectal cancers (9%) 

whereas in women, lung cancer (26%), breast cancer (14%) and colorectal 

(9%) were the top three causes of cancer deaths. Moreover, the American 
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Cancer Society (ACS) predicts that there will be a total of 1,660,290 new 

cancer cases almost evenly divided among men (51%) and women (49%) in 

2013. Furthermore, a total of 580,350 deaths from cancer, 53% in men and 

47% in women, are projected to occur in the US in 2013.  

The ACS further reports that cancer deaths in the US have reduced 

between 1991 and 2009 by 20% overall, 24% in men and 16% in women 

(12). This reduction is most likely as a result of lower smoking rates for lung 

cancers, and earlier detection and treatment for prostate, colon and breast 

cancers (12). While the etiology of most cancers is unknown, it is generally 

agreed that heredity and environmental exposures play key roles in the onset 

and progression of many cancers. For example, many Japanese immigrants 

are typically at a lower risk of developing stomach cancers caused by the 

bacteria, H. pylori, when compared to indigenous populations (1). Lifestyle 

cancers account for almost 80% of total cancers in the US (1, 12); these 

lifestyle cancers are primarily linked to tobacco consumption (example, lung 

cancer) and high fat diets (example, pancreatic cancer). Furthermore, the 

National Institutes of Health (NIH) estimates that the overall costs of cancer in 

2007 were over $226.8 billion (2): $103.8 billion for direct medical costs (total 

of all health expenditures) and $123.0 billion for indirect mortality costs (cost 

of lost productivity due to premature death).   
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D. Clinical manifestations and prevention of cancer 

Researchers  at Keele University in the United Kingdom have shown 

eight clinical features that have a higher predictive value for cancer onset and 

progression particularly in older adults (13): rectal bleeding, iron deficiency 

anemia, rectal examination that gives cause for concern, hematuria (blood in 

the urine), hemoptysis (coughing up blood), a breast lump, postmenopausal 

bleeding, and dysphagia (difficulty in swallowing). Early screening and 

detection of cancers in addition to lifestyle choices such as reduction in 

tobacco consumption and high fat diets are regarded as preventive measures 

for cancer onset and progression. However, the risk of cancer incidence also 

increases with age as a result of prolonged damage to the body’s immune 

system and DNA repair systems.  

E. Current trends in cancer treatment 

Invasion and metastasis of malignant cells can result in death if the 

spread is not controlled; however treatment methods are dependent on the 

stage and type of cancer and include radiation, surgery, chemotherapy, 

hormone therapy, biological therapy, targeted therapy and complementary 

and alternative medicine (CAM) (14). Depending on the stage, many non-

hematological cancers can be terminated by surgical exclusion whereas 

radiation therapy can be used to treat virtually any type of cancer. CAM refers 
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to non-standard medical practices used in the treatment of cancer including 

acupuncture and yoga. 

There are three broad categories of drugs for treatment of cancers and 

these are cytotoxic chemotherapy, hormone therapies and targeted therapies 

(14). Cytotoxic chemotherapy refer to drugs that kill rapidly diving cells in 

general and constitutes the most conventional class of drugs for cancer 

treatment. Cytotoxic chemotherapy drugs are subdivided into six major 

classes. The first are alkylating agents that directly damage DNA by cross-

linking DNA strands via the addition of alkyl groups directly to guanine bases 

in DNA thus preventing DNA replication and concurrently RNA transcription. 

Alkylating agents, particularly the nitrogen mustards, were the first reported 

chemotherapy drug but are no longer widely used due to toxicity issues. 

However, the FDA approved Treanda (generically known as bendamustine) a 

nitrogen mustard, for the treatment of chronic lymphocytic leukemias and 

lymphomas in 2008 (15). It should be noted that alkylating agents do not 

selectively damage malignant cells and as such are associated with a broad 

range of  local and systemic toxic effects; long term use is associated with 

damage to the bone marrow and onset of second cancers particularly bladder 

cancer and acute leukemia. Platinum-containing drugs, particularly cisplatin 

used in the treatment of testicular cancer, are often grouped with alkylating 

agents because they exert a similar mechanism of action but are less likely to 

cause leukemias (16). 
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Antimetabolites are a second class of antineoplastic drugs that function 

as cytostatics because they interfere with DNA and RNA production and 

concurrently cell division and tumor growth. For example, Efudex (generically 

known as 5-Fluorouracil or 5-FU) is a pyrimidine analog that is classified as a 

suicide inhibitor because it works through an irreversible inhibition of 

thymidylate synthase, an enzyme that plays a key role in DNA synthesis and 

repair (17). 5-FU is an established form of treatment for colorectal and 

pancreatic cancer; But 5-FU is also associated with toxicity and a range of 

side effects including myelosuppression and diarrhea. 

Anti-tumor antibiotics are a third class of cancer chemotherapy drugs 

that consist of five major drug groups: anthracyclines, dactinomycin, 

plicamycin, mitomycin, and bleomycin. The anthracyclines are by far the most 

popular anti-tumor antibiotics and have been shown to be effective against 

more types of cancer than any other class of chemotherapeutic agents (18, 

19). The prototypical anthracyclines, Daunomycin cerebudine 

(daunorubicin)—the first reported anthracycline—and Adriamycin 

(doxorubicin), are both isolated from the bacterium, Streptomyces peucetius 

but there are currently over 2,000 known analogs of doxorubicin (18). 

Anthracyclines work by intercalating DNA thus interfering with enzymes 

involved in DNA replication. Anthracyclines are used in the treatment of a 

wide variety of cancers including leukemias, lymphomas, breast, uterine and 
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lung cancers.  However, the biggest limitation to their use is cardiotoxicity 

(19). 

Topoisomerase (ToP) inhibitors constitute the fourth class of 

antineoplastic drugs; as the same suggests, these inhibitors interfere with the 

action of topoisomerases, which are ubiquitous enzymes that control DNA 

supercoiling and entanglements structure by catalyzing the breaking and 

rejoining of DNA strands (20). The mechanism of action (MOA) of ToP 

inhibitors also classifies them as pharmacological inhibitors of poly (ADP-

ribose) polymerase (PARP) used for the therapy of many diseases including 

cancer (20, 21). There are two major classes of topoisomerases (I and II) and 

ToP inhibitors are typically classified based on the class of topoisomerase 

that is inhibited (20). For example, Camptosar (irinotecan) is a topoisomerase 

I inhibitor that is typically combined with 5 F-U for the treatment of colon 

cancers. Alternatively, Etopophos (Etoposide, etoposide phosphate or VP-16) 

is a topoisomerase II inhibitor that is often used in combination with other 

chemotherapy drugs to treat many cancers including lung cancer and 

testicular cancer. However, it should be noted that treatment with 

topoisomerase II inhibitors is associated with an increased risk of a second 

cancer — acute myelogenous leukemia (AML) (14).  

Mitotic inhibitors are a fifth class of cancer chemotherapeutic drugs 

that are typically plant alkaloids and other natural product derivatives. Mitotic 
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inhibitors prevent the process of mitosis through microtubule polymerization 

thus preventing cancerous growth. Mitotic inhibitors are used in the treatment 

of many cancers including breast, lung and myelomas. For example, the 

taxanes, Taxol (paclitaxel) and Taxotere (docetaxel) are commonly used for 

the treatment of breast and lung cancers (22). However, these mitotic 

inhibitors are known for their potential to induce peripheral nerve damage 

which can be a dose-limiting side effect (14).  

Corticosteroids constitute the sixth class of cancer chemotherapy 

drugs and refer to natural steroidal hormones and steroidal-like drugs that are 

used to destroy malignant neoplasms, particularly lymphomas, leukemias and 

lymphomas. Corticosteroids are also widely used for their anti-emetic 

properties to prevent nausea and vomiting caused by chemotherapy.  

Corticosteroids such as prednisone can also be used to prevent 

hypersensitivity prior to administering chemotherapy (14). 

There are many other drugs, such as differentiating agents, used in the 

treatment of cancer that are not classically cytotoxic chemotherapeutic drugs. 

Differentiating agents are based on the concept that cancer cells are 

immature and as a result less differentiated than normal cells thus these 

differentiating agents are therapies that induce cancer cell to resume the 

process of maturation. Even though differentiation therapies do not destroy 

cancerous cells, they restrain cell growth thus allowing for the use of more 
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conventional chemotherapy drugs. For example, retinoids have been 

successfully used in the treatment of acute promyelocytic leukemia (23, 24). 

Hormonal therapies constitute the second broad classification of drugs 

used in the treatment of cancer. Hormone therapy include sex hormones or 

hormone-like drugs that change the action or production of specific 

hormones, particularly steroid hormones, or drugs that inhibit the production 

or activity of such hormones known as hormone antagonists. Hormone 

therapies are used to slow the growth of breast, prostate, and endometrial 

(uterine) cancers because these sex hormones are powerful drivers of gene 

expression in these cancers; therefore the drugs work by preventing 

cancerous cells from using the hormones needed for growth or by  preventing 

the body from making the hormones (14). Hormonal therapies are largely 

subdivided into inhibitors of hormone synthesis, hormone receptor 

antagonists and hormone supplements. Aromatase inhibitors and 

Gonadotropin-releasing hormone (GnRH) analogs are considered inhibitors of 

hormone synthesis (25-27). Aromatase inhibitors are used primarily in the 

treatment of breast cancer in post-menopausal women and include Arimidex 

(anastrozole) (25). Analogs or agonists of GnRH, also known as luteinizing 

hormone-releasing hormone (LHRH), induce a chemical castration that 

involves complete suppression of testosterone production from the male 

testes or complete suppression of the production of estrogen and 

progesterone from the female ovaries (26, 27). For example, Lupron 

http://en.wikipedia.org/wiki/Hormone
http://en.wikipedia.org/wiki/Steroid_hormone
http://en.wikipedia.org/wiki/Hormone_antagonist
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Gene_expression
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(leuprolide) and Zoladex (goserelin) are used in the treatment of hormone-

responsive cancers: breast, prostate, and estrogen-dependent conditions 

such as endometriosis and uterine fibroids (27).  

Hormone receptor antagonists include antiandrogens and selective 

estrogen receptor modulators (SERMs). Antiandrogens like Eulexin 

(flutamide) work by blocking the androgen receptor (28) whereas SERMs 

work by blocking the estrogen receptor (29, 30). However, some SERMs like 

tamoxifen are only partial agonists that can actually increase estrogen 

receptor signaling in some tissues, such as the endometrium (29, 30). 

Tamoxifen is currently first-line treatment for nearly all pre-menopausal 

women with hormone receptor-positive breast cancer (29, 30). Hormone 

supplementations include androgens like Halotestin (fluoxymesterone) that is 

used in the treatment of breast cancers (31).  

Targeted therapies are becoming increasingly more popular in cancer 

treatment as a result of a better understanding of proteins through major 

discoveries in the field of molecular oncology (1, 14). Targeted therapies can 

be used as part of the main treatment, or they may be used after treatment to 

maintain remission or decrease the chance of recurrence. Targeted therapies 

work by blocking the growth of cancer cells by interfering with specific protein 

targets that are needed for carcinogenesis and tumor growth. For example, 

Gleevec (Imatinib Mesylate) is a tyrosine kinase inhibitor that was rapidly 

http://en.wikipedia.org/wiki/Menopause
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approved by the FDA in 2001 for the treatment of  a specific abnormality 

associated with chronic myelogenous leukemia (CML) known as the 

Philadelphia chromosome-positive CML (32, 33).  Gleevec has also been 

approved for the treatment of gastrointestinal stromal tumors (GIST) and for 

use in children with acute lymphoblastic leukemia (ALL) (34, 35). 

Targeted therapies can either be small molecule inhibitors like Gleevec 

or imunotherapies such as vaccines and monoclonal antibodies. Cancer 

immunotherapies employ the use of the immune system to reject cancer by 

stimulating a patient’s immune system to attack the malignant tumor cells. 

Compared to other types of cancer treatments, immunotherapies are 

relatively new and are typically classified as either active or passive (14). 

Active immunotherapies stimulate the body’s own immune system to fight 

cancers. Active immunotherapies are usually administered via immunization, 

such as the prostate cancer vaccine, Provenge (generically known as 

sipuleucel-T) that was the first FDA therapeutic cancer vaccine that was 

approved in 2010 (36). Alternatively, passive immunotherapies utilize 

therapeutic antibodies as drugs, in which case the patient's immune system is 

recruited to destroy tumor cells by the therapeutic antibodies For example, 

Herceptin (trastuzumab) is a monoclonal antibody that selectively binds with 

high affinity to the extracellular domain of the human epidermal growth factor 

receptor 2 protein (HER2) that is implicated in many breast cancers (14).  
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F. Conclusions 

Cancers are complex diseases that present significant financial and 

emotional burden due to high prevalence worldwide and concomitantly high 

mortality rates particularly in developing countries. While efforts are currently 

in place for more effective prevention and treatment of cancer, there are 

many limitations that have reduced cancer survival including late stage 

screening, expensive treatment costs, toxicity and debilitating side effects. 

Reductions in cancer mortality rates in the US are attributed to lower smoking 

rates and earlier screening and treatments. Targeted therapies are becoming 

more popular because of improved efficacy particularly when compared to 

cytotoxic chemotherapeutic agents that show poor selectivity between 

proliferating cells in cancerous and normal tissues.  
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Chapter 2   

Biological and clinical significance of histone deacetylases (HDACs) 

A. Introduction 

Epigenetic alterations of chromatin structure are implicated in 

carcinogenesis and malignant transformations and refer to heritable changes 

in gene expression that are not accompanied by changes in DNA sequence 

(1, 2). The fact that histone acetylation is a key component in the regulation of 

gene expression has inspired the study of enzymes known as histone 

deacetylases (HDAC) because of their role in changing the accessibility of 

DNA to regulatory proteins (3-11). HDACs possess complex, multifunctional 

roles including transcriptional regulation, regulation of tubulin and cytoskeletal 

function, control of cardiac growth, regulation of thymocyte development and 

facilitation of DNA repair (12-16). In this chapter, we will discuss the biological 

and clinical relevance of HDACs as targets for the treatment of cancer and 

other key therapeutic areas.  

B. HDACs are key players in the regulation of gene expression 

The precise organization of chromatin is essential for many cellular 

processes, including transcription, replication, repair, recombination and 

chromosome segregation (3, 10, 16-19). Dynamic changes in chromatin 

structure are directly modulated by post-translational modifications of the 

amino-terminal tails (3); these covalent modifications typically alter the 
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interaction of the highly basic histone tails with the negatively charged DNA 

backbone or with other chromatin-associated proteins that may be required 

for different downstream cellular processes (3).  Post-translational 

modifications of histones include phosphorylation, methylation, ubiquitylation, 

sumoylation, and acetylation (3, 6, 17-21).  

Histone acetylation is considered to be the most studied post-

translational modulation of nucleosomes (21, 22).  Histone acetylation is 

regulated by histone acetyltransferases (HATs) and results in an open 

chromatin configuration and gene transcription whereas histone deacetylation 

is regulated by HDACs and results in gene silencing (3, 20, 23). Hypo-

acetylated histones increase the positive charge of histone and condense the 

chromatin while hyperacetylated histones neutralize the electrostatic charge 

thus resulting in chromatin relaxation (20, 23). Moreover, many transcription 

activators such as the p300/CBP complex and transcription repressors like 

the retinoblastoma protein (pRb) have been associated with HATs and 

HDACs respectively (20,25 ).  Furthermore, the balance between acetylated 

and nonacetylated proteins is controlled by the activity of HDACs and HATs 

(3, 17, 20, 21, 23-25). 

Many recent studies have shown that inhibition of HDACs elicits 

anticancer effects in several tumor cells by inhibition of cell growth and 

inducing cell differentiation (6, 10, 19, 22, 23, 24, 26-29). HDAC inhibition is 
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also associated with neuroprotective effects in both in vivo and in vitro models 

of brain disorders (11, 25, 27-29). Furthermore, HDACs are also garnering 

interest in stem cell research since HDAC inhibition results in a two- to 

fivefold increase in the efficiency of reprogramming of somatic cells to a 

pluripotent state (12, 27-29). Inhibition of HDAC enzymes also results in the 

alteration of the response to ischemic injury in the heart and reduces infarct 

size which suggests novel therapeutic approaches for acute coronary 

syndromes (13, 27). HDAC inhibitors (HDACi) have also found applications 

as anti-inflammatory agents (27-29) and in the treatment of autoimmune 

disorders including colitis (27, 30). 

C. Classification and distribution of HDACs 

HDACs, also known as lysine deacetylases (KDACs) that more aptly 

describes their function instead of their targets, are a family of enzymes that 

catalyze the reversible removal of acetyl groups on lysine residues of 

proteins, including the core nucleosomal histones H2A, H2B, H3, and H4 (6, 

24). There are 18 known HDAC isozymes classified into four groups on the 

basis of phylogenetic and functional analysis (4, 15, 17-20, 22, 24,26, 31-40). 

The most studied HDACs are the classical HDACs (Table 1) that are zinc-

dependent amidohydrolases and consist of 11 enzymes sub-divided into 

class I (HDAC-1,-2,-3, &-8), IIa (HDAC-4,-5, -7 & -9), IIb (HDAC-6 & -10) and 

IV (HDAC11).  The Class III HDACs require nicotinamide adenine 



www.manaraa.com

22 

 

dinucleotide (NAD+) as a co-substrate and consist of the silent information 

regulator 2 (SIR2)-related-proteins (Sirtuins; SIRT) SIRT 1-7 (7, 15, 16, 26, 

31, 32).  

Class I HDACs are approximately 400-500 residues long, and consist of 

HDAC1, -2, -3, and -8; class II HDACs are approximately 1,000 residues long 

and are subdivided into class IIa and IIb HDAC enzymes.  

 

Table 1: Biological functions of class I and class II HDACs(1,8).  

HDAC 
Class 

Isoform Biological Functions 

 
Class I 

HDAC1 Proliferation; gene regulation; apoptosis 

HDAC2 Proliferation; cardiac morphogenesis 

HDAC3 Proliferation; regulation of Interferon expression 

HDAC8 Proliferation; regulation of contractile capacity;   
telomerase activity 

 
Class IIa 

HDAC4 Skeletogenesis; chondrocyte hypertrophy; 
mediator of   neuronal death;  repression of retinoid 
signaling; stabilization of Hypoxia-inducible factor-1 
(HIF-1) 

HDAC5 Suppression of cardiac stress; cardiac 
development 

HDAC7 Regulation of apoptosis in developing 
thymocytes 

HDAC9 Cardiac development 

Class IIb HDAC6 Proliferation; regulation of tubulin acetylation; 
heat shock protein (Hsp90) acetylation 

 

Class IIa HDACs consists of HDAC4, -5, -7, and -9; HDAC6 and 

HDAC10 constitute the class IIb HDACs and are the only HDACs that have 

two catalytic sites  that are believed to work independently (33). HDAC11, the 

lone member of class IV, is made up of 347 amino acids and shares 
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conserved residues in its catalytic site with class I and II HDACs (7, 15, 16, 

28, 19, 26). 

HDACs as well as HATs are recruited to transcription factor protein 

complexes without directly binding to DNA (3, 7). In fact, with the exception of 

HDAC8, HDACs exist as multiprotein complexes that include co-repressors 

such as Sin3, nuclear receptor co-repressor (N-CoR), silencing mediator for 

retinoic acid and thyroid hormone receptor (SMRT), activators, chromatin-

remodelling proteins and HATs (7, 26, 38, 40-42). For example, the 

enzymatic activity of HDAC3 is greatly enhanced through interaction with the 

SMRT/N-CoR repressor complex (38, 42) whereas HDAC1 and HDAC2 are 

recruited together into three main transcriptional complexes: Sin3A, NuRD 

and CoREST (40, 41).  

 With the exception of HDAC8, class I HDACs are ubiquitously 

expressed in various human tissues, located in the nucleus, and function as 

transcription corepressors (6, 7, 19, 20, 39). However, HDAC8 expression is 

restricted to primary cells that show smooth muscle differentiation and 

possibly shifts between the nucleus and cytoplasm potentially implying a 

different biological function for HDAC8 (19, 26, 32, 35, 36). Class II HDACs 

are selectively distributed in human tissues; class IIa enzymes shuttle 

between the cytoplasm and the nucleus whereas class IIb HDACs are 

primarily located in the cytoplasm. Three of the class III sirtuins (SIRT1, 
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SIRT6-7) are localized in the nucleus, SIRT3-5 are localized in the 

mitochondria and SIRT2 is a cytoplasmic protein (14).  HDAC11, the unique 

member of class IV, resides in the nucleus and is found primarily in the brain, 

heart, skeletal muscle and kidney (7). 

D. HDAC8 as a model for the elucidation of target-ligand interactions  

HDAC8 is a 377 residue class I enzyme that lies close to the 

phylogenetic boundary between class I and class II HDACs, and maps to the 

X chromosome (16, 18, 19, 26, 35). The three dimensional crystal structure of 

human HDAC8 (Figure 1) complexed with structurally diverse hydroxamic 

acid HDAC inhibitors was first solved in 2004 by two independent groups 

(PDB ID: 1W22 and 1T64; 16, 19). Since then, the HDAC2 foot pocket and 

catalytic domains of HDAC4 and HDAC7 have been solved (26). 

Furthermore, the crystal structure of the tetrameric oligomerization domain of 

HDAC3 complexed with transducin (beta)-like 1-linked protein (TBL1), SMRT, 

and G protein pathway suppressor 2 (GPS2) was recently solved (38, 42). 

However, with the exception of HDAC8, functional HDACs are not found as 

single polypeptides, but as high-molecular weight multiprotein complexes (6, 

7, 19, 20, 39); therefore, from a structural biology perspective, HDAC8 is the 

best model for the study of catalysis and inhibition of HDAC enzymes (19, 

26). 
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Figure 1: Ribbon diagram of the HDAC8:TSA complex showing the HDAC8 fold, 
the TSA molecules (blue and pink) and the zinc ion (orange) (PDB ID 1T64; 16).  

 

X-ray crystallographic studies of HDAC8 have revealed that the 

architecture of the HDAC8 active site, likely to be common to all zinc-

dependent HDACs, shares a 30% sequence identity (Figure 2) with the 

archeobacterial homolog of eukaryotic deacetylases (HDLP) (16,19, 37). 

HDAC8 also has a distinct inhibition pattern that differs from that of 

HDAC1 and -3, which both share 43% sequence identity with HDAC8 

(19). Evaluation of HDAC inhibition by a diverse class of HDACi including 

TSA shows greater than a 300-fold difference between inhibition of either 

HDAC1 or HDAC3 when compared to HDAC8 inhibition (19). 

Furthermore, sequence alignments of HDAC8 with other class I HDACs 
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suggest that the other isozymes possess longer L1 loops  that may result 

in more conformationally static active sites for HDAC-1, -2, and -3 when 

compared to HDAC8  (16). The structure of HDAC8 consists of a compact 

α/β-domain composed of a central eight-stranded parallel β-sheet (Figure 

1) flanked by 13 α-helices (19, 26).  

 

 

Figure 2: Stereo diagram (16) depicting superposition of the HDAC8:TSA 
structure (cyan) and the L1 loops of HDAC8 (green) and HDLP (yellow).  

 

The asymmetric unit of HDAC8 (Figure 1) consists of two molecules 

packed as a head-to-head dimer (19).  Each molecule binds one Zn2+ ion 

and two K+ ions and the presence of K+ ion is hypothesized to stabilize the 

oxyanion formed in the transition state of the deacetylation reaction (19, 

26). The dimeric arrangement in the HDAC8 crystal is mediated by the two 

capping groups (pyridine and thiophene) of each hydroxamic acid inhibitor 
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molecule stacking against each other (19). This phenomenon explains 

why initial  attempts to crystallize the enzyme without a bound ligand, 

otherwise known as the apoprotein, was unsuccessful (16, 18-19); this is 

because each capping group interacts with protein residues, Pro-273 and 

Tyr-306, of the opposite molecule, forming an extensive hydrophobic 

sandwich and giving rise to the twofold axis relating the two molecules in 

the asymmetric unit (19).  

The HDAC8 active site displays characteristics of both serine and 

zinc proteases, and contains two histidine-to-aspartate (His–Asp) dyads 

with both histidine residues apparently acting as a general acid–base 

catalytic pair (Figure 3; 18, 19, 26, 35, 37). It is hypothesized that the 

catalytic metal ion (zinc) and a general base (Histidine142; H142) 

activates the water molecule in the HDAC active site (Figure 3) for a 

nucleophilic attack on the carbonyl group of the susbstrate (17, 26). The 

tetrahedral intermediate is stabilized by the formation of a hydrogen bond 

with Y306 (Phenylalanine306), and a general acid (H143) protonates the 

lysine leaving group and catalyzes the formation of the products from the 

tetrahedral intermediate (17). 
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Figure 3: Molecular surface representation and architecture of the HDAC8 active site 
(19). Stick representations are used to depict residues important in catalysis and 
inhibitor binding as well as the inhibitor and the modeled acetyllysine substrate. Oxygen 
(red); nitrogen (blue); sulfur (orange); and carbon (gray).  
 
 

The crystal structure of HDAC8 has led to a firmer understanding of how 

catalysis occurs within the HDAC family of enzymes but also revealed unique 

features of HDAC8, including conformational flexibility proximal to the binding 

site pocket mediated by the L1 active site loop (Figure 2) and the absence of a 

50-111 amino acid C-terminal domain that extends from catalytic domain (16, 

18, 19).  
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E. Diverse application of HDACi in several therapeutic areas  

In recent years,  many HDAC inhibitors (HDACi)  have either been 

approved by the FDA or are in clinical development for cancer treatment 

particularly due to the fact that these HDACi exert minimally drastic side 

effects when compared to conventional chemotherapy (5-9, 14, 23, 27-29, 31, 

34, 39, 43-45). However, an increasing number of structurally diverse HDACi 

have also been identified for the treatment of many other diseases, including, 

neurodegeneration, metabolic, inflammatory and autoimmune disorders, 

infectious diseases, and cardiovascular diseases (25, 27-29). Yet, the 

mechanisms of action of these HDACi for the treatment of most diseases 

remain poorly understood thus limiting advancement in clinical development 

and therapeutic administration (6, 28, 46, 47)  

There are four major classes of HDAC inhibitors (Table 2) currently in 

clinical development: hydroxamic acids, short chain fatty acids, cyclic 

tetrapeptides and benzamides (4, 15). They all share a common 

pharmacophore pattern consisting of: a metal binding domain that complexes 

zinc; a linker domain that mimics the substrate and occupies the active site 

channel; a connecting unit, and a surface domain that makes contact with the 

rim of the catalytic pocket (15). All HDAC inhibitors (HDACi) inhibit HDAC 

enzymes in a reversible fashion, except for the epoxides (trapoxin and 

depudesin), which inhibit HDACs irreversibly via covalent binding to the 

epoxyketone group (4). Most HDACi, including the FDA-approved vorinostat, 
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are relatively nonselective inhibitors of all or most HDAC enzymes but are 

permeable to the blood-brain barrier (BBB) (25); this permeability to the BBB  

is an attractive feature particularly for the treatment of neurodegenerative 

diseases (25). 

The largest class of HDAC inhibitors with the most promising 

therapeutic potential is the hydroxamic acids (4, 6, 7). In fact, seven of the 

twelve HDACi including currently undergoing clinical trials for the treatment of 

cancer, including panobinostat and belinostat are hydroxamic acids (6, 9, 23). 

Zolinza, (generically known as vorinostat and suberoylanilide bishydroxamide 

(SAHA); Table 3), a hydroxamic acid HDACi was approved by the U.S. Food 

and Drug Administration (FDA) in 2006 for the treatment of cutaneous T-cell 

lymphoma (6-9, 23, 48). Vorinostat is currently in clinical trials as 

monotherapy or in combination therapy for the treatment of both solid and 

hematological cancers (6, 48).   

The use of the potent, antifungal hydroxamic acid HDACi, Trichostatin 

A (TSA) and its analog, vorinostat, in the treatment of colitis in mice results in 

an increase in the expression of thymic-derived Foxp3+ T regulatory cells 

(Tregs) presumably as a result of HDAC9 inhibition (44). Administration of 

TSA in a middle cerebral artery occlusion model of brain ischemia resulted in 

a forty eight percent (48%) reduction in injury volume in treated animals when 

compared to non-treated models (13). 
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Table 2: Classification, potency and clinical application of key HDACi 

Group Structure
 

HDAC 
Inhibition  

In vitro 
IC50  
range  

Clinical Application  

Hydroxamic 
acids 

             

Class I & II: 
TSA, SAHA 

HDAC6 only  
(class IIb): 
Tubacin  

nM   Neurodegenerative 
 Neurological 
 Gastroentereology 

(colitis) 
 Cardiovascular 
  HIV 
 Cancer  

Short-chain 
fatty acids 

                     

Class I & IIa: 
Butyrate, 
VPA 

mM   Neurodegenerative 
 Neurological 
 Anti-epileptic 
 Bipolar disorders 
 HIV 
 Stem cell research 

(lupus) 
 Cancer  

Cyclic 
tetrapeptides/ 

epoxides
[4]

 

 

HDAC-1 &-2 
(class I): 
Romidepsin 

HDAC-2& -3 
(class I): 
Apicidin  

nM   

 

 Cancer  

Benzamides 

        

HDAC1: MS-
275  

μM   Cancer  
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Treatment of wild-type mice as well as of mouse models of 

neurodegenerative diseases show that the inhibition of HDAC2 by vorinostat 

restored learning ability and promoted the retrieval of long-term memory more 

potently than the fatty acid HDACi, sodium butyrate (11). However, studies have 

shown that TSA, like many HDACi, have basal toxicity and prolonged treatment 

at high doses often leads to neuronal death thus limiting their neuroprotective 

effects (25, 49, 50).  

Sodium phenylbutyrate (PB), a fatty acid HDACi, has also been shown to 

promote cytostasis and differentiation in myelodysplastic syndrome and acute 

myeloid leukemia (AML; 44). These effects may possibly be as a result of 

HDAC8 inhibition since HDAC8 has been shown to associate specifically with the 

inv(16) fusion protein found in AML(19, 51); besides, TSA has already been 

shown to  impair inv(16)-mediated repression (19, 51). The fatty acid HDACi, 

valproic acid (VPA), is a pan-HDACi used in the treatment of epilepsy and bipolar 

disorders and shows promise in the treatment of both solid tumors and 

hematological malignancies (7, 25, 45, 48). VPA has also been shown to 

possess neuroprotective effects, presumably as a result of reducing 

excitotoxicity, in cultured primary neurons that are induced by exposure to 

glutamate (25, 48-50); glutamate-induced excitotoxicity is implicated in the 

pathophysiology of many neurodegenerative diseases such as Parkinson’s 

disease suggesting a promising therapeutic application for VPA (11, 25, 48-50).  
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Moreover, HDAC2 inhibition has been shown to facilitate learning and 

memory in wild-type mice as well as in mouse models of neurodegeneration 

(11). Thus, the neuroprotective effects of VPA may be attributed to HDAC2 

inhibition.  VPA is also currently in clinical studies for the treatment of HIV and 

retinitis pigmentosa (45, 48, 52, 53). VPA has been shown to be more potent 

than the hydroxamates, TSA and vorinostat, in the reprogramming of somatic 

cells to a pleuripotent state possibly by the collective effects of upregulation of 

embryonic stem (ES)-specific genes and the downregulation of mouse 

embryonic fibroblasts (MEF) as a result of HDAC inhibition (12).  

The bicyclic peptide, Istodax (generically known as Romidepsin; Table 

3) was the second HDACi to be approved by the FDA in 2009 for the 

treatment of CTCL (6, 47). MS-275, a benzamide derivative, is in Phase I 

clinical trials in the treatment of several forms of cancer but no full report has 

been published to date (7). Entinostat, a synthetic benzamide derivative, has 

been shown to selectively inhibit two class I HDAC enzymes, HDAC1 and 

HDAC3 (6).  Entinostat and mocetinostat are isoform-selective, synthetic 

benzamide derivatives that are currently in clinical trials for the treatment of 

both solid and hematological cancers (2, 6, 48). Entinostat is also in clinical 

trials for the treatment of relapsed or refractory Hodgkin lymphoma (6). 
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Table 3: Comparative analysis of the two FDA-approved HDACi 

Category HDACi 

Brand name Zolinza (Merck & Co., Inc.)  Istodax  (Gloucester Pharma) 

Generic names (s) Vorinostat; SAHA 
 

 Romidepsin 
  

Approval Date:  October 2006  November 2009 

Structural Class Hydroxamic acid 
 

 Cyclic tetrapeptide 

Structure
[4] 

 

 

 

HDAC inhibition Broad-spectrum  Class I-specific 

Source Trichostatin A (TSA ) Analog 
Note: TSA isolated from the 

bacterium Streptomyces 
hygroscopius 

 Isolated from the bacterium 
Chromobacterium violaceum 

Clinical Indication CTCL (progressive or recurrent  
or following 2 systemic therapies; 
based on 2 clinical trials with 107 
patients total) 

 CTCL (in patients who have 
received at least 1 prior systemic 
therapy; based on 2 clinical trials 
with 167 patients total) 

Mode of Action Not  fully characterized but shown 
to: 
1. Cause accumulation of 

acetylated histones in vitro. 
2.  Induce cell cycle arrest and/or 

apoptosis of some transformed 
cells. 

 Not fully characterized but shown 
to:  
1. Induce cell differentiation, cell-

cycle arrest and apoptosis.  
2. Inhibit hypoxia-induced 

angiogenesis and depletes 
several oncoproteins. 
 

Adverse effects 1. Gastrointestinal symptoms: 
diarrhea, nausea, anorexia, 
weight decrease, vomiting, 
constipation. 

2. Constitutional symptoms:  
fatigue, chills. 

3. Hematologic abnormalities: 
thrombocytopenia (low platelet 
count), anemia. 

4. Taste disorders: dysgeusia, dry 
mouth. 

 1. Gastrointestinal symptoms: 
nausea, vomiting, anorexia. 

2. Constitutional symptoms: 
fatigue.  

3. Hematologic abnormalities: 
anemia, thrombocytopenia, 
neutropenia (low white blood 
cells), and lymphopenia. 

4. Other adverse effects: 
electrocardiogram (ECG) 
changes. 
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F. HDACs are validated targets for the treatment of cancer 

The increased focus on HDAC inhibitors (HDACi) for cancer treatment 

stems from their ability to alter several cellular functions known to be 

important in cancer cells (4, 6, 8, 14, 15, 19, 26). HDACi have demonstrated 

anticancer efficacy across a range of malignancies, especially in the 

hematological cancers resulting in the approval of two HDACi for CTCL 

treatment (16). The mechanisms of the antiproliferative effects of HDACi is 

not fully elucidated but generally involves the accumulation of acetylated 

histones and non-histone protein substrates that are involved in the regulation 

of gene expression, cell proliferation and cell death (7). 

HDACs have been shown to play a significant role in transcriptional 

regulation and regulation of tubulin and cytoskeletal function (54-56). HDAC1, 

HDAC2, HDAC3, and HDAC9 have been shown to coimmunoprecipitate with 

the ATP-dependent heat shock protein-70 (Hsp-70) resulting in inhibition of 

the chaperone activity of the protein (9, 30). HDAC6 has been shown to 

deacetylate the structural protein, α-tubulin, resulting in a modulation of cell 

motility (9, 56). HDACs are known to associate with a number of well 

characterized cellular oncogenes and tumor-suppressor genes such as the 

retinoblastoma protein, leading to an aberrant recruitment of HDAC activity, 

which in turn results in changes in gene expression (4). Overexpression of 

HDACs has also been observed in different tumor types including gastric, 
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colorectal, breast and prostate cancers as well as hematological cancers like 

leukemias and lymphomas (9, 19, 31, 35, 39, 57-60).  

Gene knockout experiments have shown that class 1 HDACs are 

important in cell survival and proliferation whereas class II HDACs have 

tissue-specific roles (15, 19, 36). Class I enzymes, especially HDACS -1, -2 

and -3, are the most frequently expressed in cancers including lymphoid cell 

lines and primary tumors (4, 7, 14, 26, 32, 56). Evidence for increased 

expression of the class I HDACs, HDAC-1, -2 and -3, have also been 

reported in colon cancer (58, 59). Overexpression of HDAC1 has been 

reported in approximately 70% of all prostate cancer lesions (57, 60); 

whereas, overexpression of HDAC8 has been observed in a common form of 

acute myeloid leukemia (16, 19). Overexpression of the class II enzyme, 

HDAC10 has also been reported in gastric cancer (56).  

G. Therapeutic limitations of broad-spectrum HDACi 

It has been demonstrated that broad-spectrum inhibition of several 

HDAC isoforms disrupt multiple cellular processes that depend on protein 

acetylation (55); however, some of these processes may not be involved in 

the maintenance of tumor progression thus broad-spectrum HDAC inhibition 

increases the potential for toxicity (23, 55). A recent high-throughput profiling 

of the potency of a  panel of structurally diverse small HDACi against all class 

I and II HDAC enzymes showed an apparent redundancy of these HDACi 
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such as vorinostat towards inhibition  of toward HDAC-1, -2, and -3 but the class 

IIa enzymes are not targeted by most HDACi tested (6). 

 Furthermore, most HDACi, especially the hydroxamic acids, bind the 

zinc ion in the HDAC active site and show limited isoform selectivity within or 

between class I, II and IV HDACs (19). The two FDA-approved HDACi, 

vorinostat and romidepsin, like most HDACi currently in clinical development, 

are nonselective inhibitors of all or most of class 1 and class II HDACs 

resulting in significant adverse side-effects that become dose-limiting in 

clinical trials (6, 9, 19). 

H. Current trends in pre-clinical and clinical development of HDACi: 

Isoform-selective HDACi and combination therapies 

We have recently reported increased development of isoform-selective 

HDACi presumably as a result of superiority in the reduction of toxic effects 

as well as improved efficacy (48).  However, seven of the twelve HDAC 

inhibitors currently in clinical development are hydroxamic acids (15); this 

hydroxamic acid functionality binds to a zinc ion in the active site displaying 

little isoform selectivity between class I, II and IV HDACs (16).  Furthermore, 

the presence of the strong metal chelating group in hydroxamic acids can 

result in inhibition of other metalloenzymes or sequestration of metal ions 

(16).  



www.manaraa.com

38 

 

Isoform-selective HDAC inhibitors (HDACi) offer the ability to alter 

distinct pathways, which are more specifically involved in the tumor 

phenotype and could therefore provide a wider therapeutic index compared 

with the broad spectrum HDACi currently in clinical development (4, 23, 37). 

There are several factors that have hindered the development of potent 

isoform-selective HDAC inhibitors (HDACi); these factors include similarity 

between the catalytic sites of HDAC enzymes, and until recently, lack of X-ray 

crystal structures (7, 19).  A ranking of the substrate selectivity of HDACs 

using a library of fluorogenic tetrapeptide substrates suggests that HDAC8 

has the highest substrate selectivity followed by HDAC-1, -3 and -6 (37, 61).  

Differences in catalytic activity and even substrate selectivity can be exploited 

in developing isoform-selective class I and possibly class II HDACi with a 

wider therapeutic index against more aggressive and more common forms of 

cancer (10, 37, 61). 

Three-dimensional models for four class I histone deacetylases (HDAC-

1, -2, -3, and -8), built using homology modeling and docked to three widely 

studied hydroxamic acid HDACi (TSA, CG-1521, and SK683) shows small 

differences in the shape and charge distribution around the opening of the 

active site of the enzymes (10).  These observations indicate that it is 

possible to develop HDAC8-selective inhibitors, whereas development of 

isoform-selective inhibitors between HDACs that show more sequence 

homology, such as HDAC1 and -3, may be more challenging (10). However, 
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Arqule Inc. has reported a series of aliphatic hydroxamic acids that show 

selectivity towards HDAC1 (48). Furthermore, screens of large compound 

libraries have yielded selective inhibitors of HDACs 1, 4, 6, and 8 but 

structural determinants of selective HDAC inhibition remain unknown (7, 9, 

45, 48).  

It is generally agreed that combination of chemotherapy or 

chemoradiotherapy is preferable over single-agent therapy in order to 

maximize treatment efficacy and concurrently reducing toxicity (6, 7, 9). 

Various preclinical and clinical studies have shown that HDACi can improve 

the efficacy of several chemotherapeutic and radiotherapeutic treatments 

including targeted anticancer drugs, cytotoxic agents, antiangiogenesis drugs, 

or radiation therapy (6). This improvement in efficacy may be attributed to 

synergistic or additive effects particularly given that these HDACi exert 

relatively minor side effects when compared to conventional chemotherapy 

(6, 28). Furthermore, combination therapies may also help to overcome 

potential mechanisms of drug resistance to HDACi possibly by inducing 

caspase-independent cell death rather than autophagic cell death as has 

been reported for combination of the FDA-approved anti-estrogen drug, 

tamoxifen, with vorinostat in tamoxifen-resistant MCF-7 (TAMR-MCF-7) cells 

xenograft model (6, 62). Combination of vorinostat with tamoxifen has been 

shown to reverse hormone resistance in a phase II study of patients with 

hormone therapy-resistant breast cancer (63). Combination of tamoxifen with 
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vorinostat, MS-275 and valproic acid has also been shown to improve 

apoptosis in breast cell lines (64).  

Several preclinical studies of vorinostat in combination with other 

anticancer agents have shown remarkable synergistic or additive effects in 

multiple solid tumor cell lines as well as hematological malignancies such as 

multiple myeloma, non-Hodgkin lymphoma and leukemia (6). Mocetinostat 

has been evaluated in single-agent and combination therapies in several 

phase I and phase II clinical trials in both solid and hematological 

malignancies. Various panobinostat-based combination studies are currently 

being conducted, including a phase I/II trial of panobinostat with the FDA-

approved kinase inhibitor, immunosuppressant and anti-cancer agent, 

everolimus, in patients with relapsed Hodgkin lymphoma and non-Hodgkin 

lymphoma (6). 

I. Conclusions 

HDACs are a family of 18 enzymes that play key roles in regulation of 

gene expression. X-ray crystallographic structures of HDAC8 have led to a 

better understanding of catalysis and inhibition of HDAC enzymes. Structures 

of the foot pocket of HDAC2, catalytic domains of HDAC4 and HDAC7, and 

the crystal structure of the tetrameric domain of HDAC3 complexed with 

TBL1, SMRT, and GPS2 have been solved. These structural studies have 

also been pivotal in understanding target-ligand interactions. HDAC inhibitors 
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show promise in the treatment of cancer, neurodegenerative diseases and 

other key therapeutic areas. Two pan-HDACi, vorinostat and romidepsin, 

have been approved by the FDA for CTCL treatment but broad spectrum 

HDAC inhibition has been associated with increased toxicity. Therefore, 

current trends favor the development of isoform-selective inhibitors that could 

provide better pharmacokinetic profiles while maintaining efficacy as a result 

of selective targeting of HDAC enzymes. 
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Chapter 3 

Discovery and Development of Tropolone natural product derivatives as HDAC 

inhibitors 

A. Introduction 

Natural products have found diverse applications as antimicrobial, 

antifungal, and anticancer agents as well as in the treatment of neurological 

disorders (1-6). Several HDACi are either natural products or derivatives of 

natural products (Figure 1; 7-14); examples include the hydroxamate, TSA, 

that is isolated from the actinomycete Streptomyces hygroscopius; SAHA, a 

synthetic derivative of TSA, that was approved by the FDA in 2006 for CTCL 

treatment; the bicyclic depsipeptide antibiotic, romidepsin, that is isolated 

from Chromobacterium violaceum and approved by the FDA in 2009 for 

CTCL treatment. However, preclinical development of natural products is 

often limited by structural complexity and high molecular weight.  

β-thujaplicin, otherwise known as hinokitiol, is a tropolone-related 

compound and natural product that is isolated from the woods of Thujopsis 

dolabrata and Chamaecyparis  obtusa (6,15-19 ); hinokitiol is associated with 

a range of biochemical and pharmacological activities including antifungal and 

antimicrobial activities as well as antiproliferative activities in multiple cell lines 

including malignant melanomas, stomach and prostate cancers.  Tropolones 

are non-benzenoid aromatic compounds characterized by a seven-membered 
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ring and an alpha-hydroxyl ketone (Figure 1). The presence of the alpha- 

hydroxyl ketone on the tropolone ring in hinokitiol has been shown to chelate 

metal ions and to inhibit metalloenzymes (6). However, to the best of our 

knowledge, this is the first comprehensive study dedicated to the 

development of tropolone natural product derivatives as isoform-selective 

histone deacetylases inhibitors (HDACi).  Therefore, in this chapter we will 

discuss the history of the development of tropolones as (HDACi) and our 

efforts to elucidate target-ligand interactions via in silico docking studies and 

biochemical assays.  

a)               b)

  

       

c)         d)            e)                                           

         

                                          

 

Figure 1: Structures of (a) TSA; b) SAHA; c) Romidepsin (10); d) tropolone scaffold; 
e) β-thujaplicin. 
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B. Development of the tropolone library 

We hypothesize that the lead-like nature of the simple tropolone 

scaffold will allow for zinc metal binding, a lipophillic seven-membered ring to 

interact with the hydrophobic pocket surrounding the zinc ion and three 

unique positions (α, β, γ) available for substitution to reach essential pockets 

in HDAC isozymes. Therefore, a library of tropolone natural product 

derivatives are currently being synthesized and characterized in-house by the 

Wright and Anderson laboratories with the goal of evaluating structure-activity 

relationships (SAR) via the addition of structurally-diverse substituents at the 

alpha, beta, and possibly gamma positions of the tropolone ring.  

These structurally-diverse substituents involve the addition of alkyl and 

aryl groups to the tropolone ring in order to evaluate SAR via biochemical and 

functional studies. We expect that structure-guided substitutions to the 

tropolone scaffold will be used to elucidate potency and selectivity, not only 

for HDAC enzymes relative to other metalloenzymes, but within individual 

HDAC isozymes. There are currently fourteen compounds in the tropolone 

library (Table 1). The structures of compound 1, an unsubstituted tropolone, 

and compound 10—β-thujaplicin—are shown in Figure 1.  
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Table 1: Tropolone library 

Structure  Structure 

Alpha-substituted tropolones  Beta-substituted tropolones 

Compound 2    Compound 7 

Compound 3     Compound 8 

Compound 4     Compound 9 

Compound 5     Compound 11 

Compound 6    Compound 12 

     Compound 13 

    Compound 14 
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C. Prospective in silico docking studies 

As previously discussed in Chapter 2, HDAC8 is the best model for the 

study of HDAC catalysis and inhibition because it is the only isozyme that 

does not exist as a multiprotein complex (20-24). The HDAC8 active site 

consists of a long, 12-Å-deep, narrow tunnel with a zinc ion positioned near 

the bottom of the enzyme active site (Figure 2) that accommodates the 

acetylated lysine during the catalytic reaction (20-24).   

 

 

 

 

 

 

 

Figure 2: Mesh diagram depicting the binding of the hydroxamate moiety of 
SAHA to the zinc atom (pink) in the cavity of HDAC8 (20, 21).  

 

Computational studies of a tropolone docked in the HDAC8 crystal 

structure (PDB ID1T64; 22) show that the tropolone ring sits in a 

hydrophobic pocket that consists of Phe208, Tyr306, Met274 and Phe152 

(Figure 3). Mutational studies have shown that the catalytic tyrosine 

residue (Tyr306) is essential for enzymatic activity (24). Tyr306 is also 
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conserved in all HDACs except for class IIa enzymes where it is replaced 

by a histidine (25). Hence, this position will be very important in 

determining isoform selectivity among HDAC enzymes. The tropolone ring 

is also within van der Waals distance of Phe208, His143 and Gly151 

which should provide stabilizing interactions for the ligand-target complex. 

 

 

 

 

 

 

Figure 3: A tropolone, analog 5 (compound 10 in table 1) modeled in the active 
site of HDAC8 

 

To date, nine crystal structures of human HDAC8 complexed with 

various inhibitors have been solved (26). All crystal structures contain a 

Zn2+ ion in the HDAC8 active site, two K+ ions bound to structural sites, 

and conformational variability in the L1 and L2 loop segments (Figure 4a) 

that may be responsible for the polymorphism observed for HDAC8-

inhibitor complexes (22, 26). In fact, a comparison of the crystal structure 
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of HDAC8 (22) complexed with four structurally diverse hydroxamates 

(TSA, SAHA, MS-344 and CRA-A) also reveals remarkable malleability 

and structural differences in the protein surface in the vicinity of the 

opening of the active site (Figure 4b). Our docking studies of a tropolone 

modeled in the active site of HDAC8 (Figure 4c) also revealed similar 

trends in the flexibility of the HDAC8 active site. Therefore, from a 

physiological perspective, this flexibility shows that HDAC8 might be able 

to bind acetylated lysines that are presented in a variety of structural 

contexts. These observations indicate that is possible to develop HDAC8-

selective inhibitors (22, 27-29). Indeed, several hydroxamate HDAC8-

selective inhibitors have been reported to be in preclinical development 

today particularly for cancer treatment  by Pharmacyclics Inc., Gladstone 

Institutes and Ithaca College (29).  
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Figure 4: a) Simplified illustration with the aid of of Cα traces show movement of 
the L1 loop between the HDAC8:MS-344 and HDAC8:TSA complexes (11); b) 
Solvent accessible surfaces (11) of the active site regions of the HDAC8:TSA, 
HDAC8:MS-344, HDAC8:SAHA, and HDAC8:CRA-A complexes; c) Space-filled 
structure of a tropolone (Compound 9) superimposed with TSA docked into the 
active site of HDAC8 (PDB ID: 1T64; 22). 

 

a)  

 

                                                            

 

 

 

 

b)  
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c)  

 

 

 

 

 

 

 

 

D. Cloning, expression and purification of HDAC8 

The strength of structure-based drug design (SBDD) as a tool in 

medicinal chemistry relies primarily on high-resolution three-dimensional X-

ray crystal structures of a target-ligand complex (30, 31). Our in silico docking 

studies suggest that tropolones are promising HDACi and have prompted 

interest towards the co-crystallization of an HDAC8:tropolone complex with 

the goal of generating a focused library, evaluating structure activity 

relationships (SAR) and designing new compounds that show selectivity and 

potency towards HDAC isozymes. We herein describe our efforts to clone, 

express and purify HDAC8.  
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We cloned HDAC8 based on modifications of previously reported 

conditions (22, 23, 26, 32). HDAC8 (Open Biosystems: clone ID 

LIFESEQ257457) was expressed in Escherichia coli using a T7 Lac 

promoter-driven vector, pET41b (EMD4 Biosciences, USA). The HDAC8 

coding sequence was PCR-amplified using the following primer sequences 

(forward , 5’- GTGTC TCTAGA TGGAGGA GCCGGAGGAA CCG – 3’; 

reverse, 5’- GTGTC CTCGAG GAC CACATGCTTC AGATTCCCTT 

TGATGTAGTT G 3') with XhoI and XbaI restriction endonuclease sites, 

respectively. The PCR product was digested with XhoI and XbaI and 

subcloned into the multiple cloning region of pET41b. The inserted gene 

sequence was confirmed on both strands by automated dideoxynucleotide 

sequencing using the T7 promoter primers (UCONN DNA Biotechnology 

Facility). The resultant HDAC8 expression plasmid was then transferred to 

the lysogenic BL21 DE3 E. coli strain containing a chromosomal copy of T7 

RNA polymerase under lacUV5 promoter control.   

Subsequent expression and purification was performed essentially as 

described by the Vannini group in reference 23 and is described in Section A 

of the Materials and Methods chapter. Efforts are currently in place by the 

Anderson laboratory to solve the crystal structure of our HDAC8 protein 

(ACA-HDAC8) bound to a tropolone. The use of structure-based drug design 

(SBDD) will allow for modifications at the unique positions (α, β and γ) of the 

seven-membered tropolone ring, provide a more distinct appraisal of the 
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structure-activity relationships (SAR), and produce leads for the development 

of tropolones as isoform-selective HDAC inhibitors. 

E. Evaluation of HDAC enzyme kinetic parameters 

We evaluated key enzyme kinetic parameters for three class I HDACs 

(HDAC1, HDAC2 and HDAC8), two class IIa HDACs (HDAC4 and HDAC5), 

and one class IIb HDAC (HDAC6) using fluorogenic assays that correlate 

HDAC activity to fluorescence (Table 2). Experimental methods are 

highlighted in Section B of the Materials and Methods chapter (33). With the 

aid of non-linear regression analysis (GraphPad Prism Software, Inc., CA), 

we were able to determine best fit values for the Michaelis-Menten (KM) 

constant and maximum enzyme velocity (Vmax) and concurrently determine 

values for the enzyme turnover number (kcat) as well as the catalytic efficiency 

(kcat /KM). We compared our results to published data for HDAC enzyme 

kinetics (34, 35). Standard error values are reported in Section 1 of the 

Appendix. Corresponding histograms are in the Appendix, Section 2.  

There were some notable differences within and between HDAC 

isozymes (Table 2). For example, the KM for HDAC4 was 43 µM whereas the 

KM  for HDAC5 was 116.6 µM but kcat /KM  values for HDAC4 and HDAC5 were 

52,308 M-1 s-1 and 947 M-1 s-1 respectively. These values indicate that HDAC4 

has a better catalytic efficiency than HDAC5. Conversely, HDAC8 had a KM  

value of 56.82 µM and kcat /KM  value of 29,224 M-1 s-1  whereas HDAC6, the 
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only assayed isozyme with two catalytic active sites, had a KM  value of 23.42 

µM and kcat /KM  value of 123,641 M-1 s-1, the highest value for any isozyme. 

But this observation is not surprising particularly given that the two catalytic 

domains in HDAC6 contribute independently to the overall activity of the 

enzyme (36, 37). These observations are promising and validate the use of 

the fluorogenic assays for evaluation of HDAC enzyme inhibition by our 

tropolone library.  

  Table 2: Kinetics and comparative reactivity analysis 

Kinetic 

Parameter  

Class I HDAC  Class IIa HDAC  Class IIb 

HDAC  

 

HDAC1  

 

HDAC2  HDAC8  HDAC4  HDAC5 

 

HDAC6  

KM  (μM) 29.09 39.05 56.82 43.00 116.6  23.42 

Vmax (μM) 437.40 599.50 5,661.00 5803.00 772.5  4,069 

kcat (s
-1) 0.25 0.26 1.70  2.25 0.10  2.90 

kcat /KM (M
-1 s-1) 8,615 6,552 29,224 52,308 947  123,641 
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F. Elucidation of HDAC inhibition 

Our initial assessment of HDAC inhibition was evaluated using the 

natural product (compound 10), a commercially available human recombinant 

HDAC2 enzyme (BPS Bioscience, San Diego, CA), and a fluorogenic HDAC 

assay kit (Active Motif, Carlsbad, CA). Experimental methods are highlighted 

in Section C of the Materials and Methods chapter. We compared our results 

to reported data for HDAC enzyme inhibition (34, 35, 38).  Standard error 

values are reported in Section 3 of the Appendix.  Assay data are highlighted 

in Figure 5a and Figure 5b. Our data show that the fluorogenic assay is highly 

reproducible and allowed us to subsequently conduct a comprehensive 

analysis of the tropolone library in a panel of HDAC enzymes.  
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Figure 5: a) Single time-point analysis of HDAC2 inhibition by compound 10; b) 
Histogram summarizing comprehensive analysis of HDAC2 inhibition by compound 10. 
Note that graph and histogram represent non-linear regression analysis (GraphPad 
Prism) of HDAC2 inhibition by compound 10 (Log C = Log Concentration).  
 
a) 

 

 

b) 
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We evaluated inhibition constant (Ki) values for our tropolone library for 

three class I HDACs (HDAC1, HDAC2 and HDAC8), two class IIa HDACs 

(HDAC4 and HDAC5), and one class IIb HDAC (HDAC6) using fluorogenic 

assays that correlate HDAC activity to fluorescence. Detailed assay methods are 

highlighted in Section C of the Materials and Methods Chapter. We compared 

our data to reported values for HDAC inhibition (28, 34, 35, 38). Assay data 

indicated that our compounds showed high potency and selectivity towards 

HDAC2 and HDAC8 relative to the other evaluated HDAC isozymes. Standard 

error values for IC50 analysis of HDAC2 and HDAC8 are reported in the Appendix, 

Section 4.  With the aid of non-linear regression analysis (GraphPad Prism), we 

were able to determine IC50 values and convert them to Ki values using methods 

described by Cheng and Prusoff (39).  

 There were significant differences in inhibition within and between HDAC 

isozymes; between TSA and the tropolones; as well as between the alpha-

substituted and beta-substituted tropolones (Table 3). The tropolones showed 

preferential inhibition of the class I HDACs when compared to either class IIa or 

class IIb HDACs. For example, the tropolones were not active in HDAC5 at the 

tested concentrations (0.0002-20 µM) whereas TSA had a Ki value of 5 µM.  With 

the exception of compound 2 (Ki =527 nM), the tropolones were not active in 

HDAC6 whereas TSA had a Ki value of 3.02 nM. However, in a similar manner 

as TSA, the tropolones inhibited HDAC4 relatively poorly with Ki values greater 

than 8 µM. Yet this discovery is not surprising since most HDACi show poor 
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selectivity towards inhibition of class IIa HDACs possibly due to difficulty in 

establishing accurate methods for evaluation of HDAC activity and inhibition (35, 

40). HDAC2 and HDAC8 share 43% sequence identity (22) and inhibition of 

these two isozymes by the tropolones were by far more promising than any of the 

other HDAC isozymes.  

With the exception of the natural product, (compound 10; Ki = 15. 44 nM) 

and the methylated tropolone (compound 11) that was inactive even at 2500 nM, 

the tropolones exhibited notable potency in the inhibition of HDAC2 with values 

that were even more potent than that of TSA (Ki =1.06 nM). Inhibition of HDAC2 

by both the alpha-substituted and beta-substituted tropolones was similar; for 

example, compounds 5 and 9 with dimethoxyphenyl groups at the alpha and beta 

positions respectively had corresponding Ki values of 0.42 nM and 0.51 nM for 

HDAC2.  
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Table 3: Inhibition constants for class I and class II HDACs 

 Note: For all HDAC isozymes except HDAC4 & HDAC5; Not Active 
(N.A.) refers to  Ki  values >2500 nM, the upper limit of assayed inhibitor 
concentrations; for HDAC4 & HDAC5, N.A. refers to  Ki  values >20,000 
nM, the upper limit of the assay.   

Compound  Ki ( nM) 

Class I HDAC Class  II HDAC 

 HDAC1 HDAC2 HDAC8 HDAC4  HDAC5  HDAC6  

 
TSA 

 
0.87 1.06 69.65 

 
14,547.00 5,000 3.02 

 
1 

 
N.A. 0.04 N.A. 

 
N.A. N.A. N.A. 

 
2 

 
N.A. 0.26 1.09 

 
N.A. N.A. 527.00 

 
3 N.A. 0.25 186.30 

 
N.A. 

 
N.A. 

 
N.A. 

 
4 

 
N.A. 0.81 83.80 

 
N.A. 

 
N.A. 

 
N.A. 

 
5 

 
N.A. 0.42 811.50 

 
N.A. 

 
N.A. 

 
N.A. 

 
6 

 
N.A. 0.23 123.65 

 
N.A. 

 
N.A. 

 
N.A. 

 
7 

 
N.A. 0.06 1.47 

 
10,860.00 N.A. N.A. 

 
8 

 
N.A. 0.12 2.38 

 
8,361.00 

 
N.A. 

 
N.A. 

 
9 N.A. 0.51 266.30 

 
11,204.00 

 
N.A. 

 
N.A. 

 
10 N.A. 15.44 177.95 

 
N.A. 

 
N.A. 

 
N.A. 

 
11 N.A. N.A. 7.87 

 
11,641.00 

 
N.A. 

 
N.A. 

 
12 N.A. 0.13 12.81 

 
806.13 

 
N.A. 

 
N.A. 

 
13 N.A. 0.22 2.27 

 
6115.00 

 
N.A. 

 
N.A. 

 
14 N.A. 0.04 122.70 

 
990.23 

 
N.A. 

 
N.A. 
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With the exception of the unsubstituted tropolone (compound 1) that 

was inactive even at 2500 nM, the tropolones had submicromolar Ki values 

for HDAC8 that were comparable to TSA (Ki =69.65 nM).  However, the beta-

substituted tropolones seemed to be more potent than the alpha-substituted 

tropolones. For example, compound 5 had a Ki value of 811.50 nM whereas 

compound 9 had a Ki value of 266.30 nM. Furthermore, the tropolones show 

some selectivity towards HDAC2 when compared to HDAC8. For example, 

compound 9 exhibits greater than 500-fold selectivity towards HDAC2 relative 

to HDAC8. This observation is highly promising and shows that it is possible 

to develop these tropolones as HDAC2-selective inhibitors. This discovery is 

groundbreaking particularly given the fact that there are no reported HDAC2-

selective inhibitors in pre-clinical and clinical development presumably due to 

the high degree of similarity in the catalytic sites of HDAC1, HDAC2 and -

HDAC3 (29, 41).  

Furthermore, hinokitiol (compound 10) has also been shown to 

possess neuroprotective activity in HT22 mouse hippocampal cells (42). 

Published reports have shown that treatment with HDACi such as TSA, 

sodium butyrate, or vorinostat protected against glutathione depletion-induced 

oxidative stress, a mechanism that is implicated in many neurodegenerative 

diseases including strokes and Alzheimer’s disease (43, 44). Concurrently, 

HDAC2 inhibition has been shown to facilitate learning and memory in wild-

type mice as well as in mouse models of neurodegeneration (46). Our studies 
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may have shown that the neuroprotective effects of hinokitiol may be as a 

result of HDAC2 inhibition. However, we cannot rule out the possibility that 

other protein substrates and HDAC isoforms might be implicated by the 

tropolones (42). Yet, our data suggests that it is indeed possible to explore 

the use of tropolones in the treatment of neurodegenerative diseases. 

 Interestingly, the tropolones did not inhibit HDAC1 whereas TSA had a 

Ki value of 0.87 nM. This observation is quite significant particularly given that 

HDAC1 and HDAC2 share 80% sequence identity, exhibit functional 

redundancy in many cell types, and are recruited together into three main 

transcriptional complexes: Sin3A, NuRD and CoREST (46). However, our 

studies may be limited by difficulty in standardizing data obtained from 

different HDAC fluorogenic substrates particularly given high batch to batch 

variability in substrate properties (47). Yet, as previously stated, our data 

indicates that it may be possible to develop these tropolones as HDAC2-

selective inhibitors, and explore potential therapeutic uses for the treatment of 

cancers and possibly neurodegenerative diseases.  

G. Investigation of the mechanism of action of tropolones in HDAC8 

Based on enzyme inhibition data, compound 2 was chosen to evaluate 

the mechanism of action of tropolones in HDAC8. Experimental methods are 

described in section D of the Materials and Methods chapter. Assay data 

(Figure 6) were analyzed via non-linear regression analysis (GraphPad 
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Prism). Standard error values for Ki and alpha are reported in section 5 of the 

Appendix.   

The parameter, alpha, (Ki
‘/Ki) is used to determine the degree to which 

binding of an inhibitor changes the affinity of the enzyme for the substrate 

(48).  The alpha value obtained for Compound 2 in HDAC8 was 4.5 indicating 

competitive binding since alpha is statistically greater than 1 (48, 49).  

Furthermore, the measured Ki  for compound 2 is 0.53 nM, which correlates 

well with the calculated Cheng and Prusoff Ki   of 1.09 nM. Therefore, the 

competitive mode of inhibition as well as relatively poor binding by the 

methylated tropolone (compound 11) highly suggests that the tropolones 

inhibit HDAC activity by targeting the bound Zn2+ metal at the active site.  

 

 

 

 

 

 

 

 

 

Figure 6: Analysis of mode of binding of compound 2 against HDAC8 
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H. Optimizing the tropolone scaffold to explore the HDAC hydrophobic 

pocket 

We are currenty working on the development of a second generation 

library of tropolones that will potentially maintain isoform selectivity in HDAC 

inhibition while exerting a more robust therapeutic application particularly for 

the treatment of solid tumors and hematological malignancies.  The proposed 

scaffold for second-generation tropolones (Figure 7) will now include a linker 

domain (the alkyl chain) that is presumed to mimic the natural HDAC 

substrate and occupy the active site channel thus allowing for exploration for 

isozyme selectivity (41, 50). R groups will either be hydrogen atoms, alkyl 

groups, or aryl groups. The same substitutions will also be evaluated in the 

alpha and possibly the gamma positions in order to elucidate structure-activity 

relationships (SAR).  

 

 

 

Figure 7: Proposed scaffold for 2nd generation tropolones 
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Moreover, virtually all HDACi currently in clinical development for the 

treatment of cancer share this common pharmacophore pattern (28-30, 41, 50) 

consisting of: a metal binding domain which complexes zinc; a linker domain 

and a surface domain or cap group that makes contact with the rim of the 

catalytic pocket. In our case, the tropolone ring with the alpha-hydroxyl ketone 

serves as the metal-binding domain, the alkyl chain will serve as the linker 

domain and the secondary aryl moiety will serve as the cap group. It is 

expected that modification of the tropolone scaffold may also lead to 

improvements in pharmacokinetic properties that may improve in vitro potency 

& possibly in vivo efficacy (51, 52). Knowledge garnered from the work 

presentated in this dissertation as well as the proposed studies is crucial 

towards further development of tropolones as isoform-selective HDAC 

inhibitors with enhanced antitumor properties.  

I. Conclusions 

Many HDACi, including the two FDA-approved HDACi, are natural 

products or derivatives of natural products. Our tropolone natural product 

derivatives are highly promising competitive HDACi that show preferential 

inhibition of class I HDACs, particularly HDAC2 and HDAC8. In silico docking 

studies have provided visual insights on HDAC8 binding by the tropolones; 

efforts are currently in place to co-crystallize a tropolone with our purified 

HDAC8 protein (ACA-HDAC8) in order to more aptly evaluate target-ligand 
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interactions and use this knowledge to guide substitutions to the tropolone 

scaffold. Furthermore, our biochemical analyses indicate that it is possible to 

develop tropolones as HDAC2-selective inhibitors and exploit their 

therapeutic potential particularly for the treatment of neurodegenerative 

diseases; this observation is groundbreaking since there are no reported 

HDAC2-selective inhibitors either in preclinical or clinical development. We 

are also developing new compounds potentially for the treatment of cancer 

that is based on a modified scaffold that will allow us to further probe the 

HDAC hydrophobic pocket and explore isozyme selectivity.  
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Chapter 4  

Analysis of cancer cell line selective cytotoxicity 

A. Introduction 

The ability of established HDACi to induce cell death alone and/or in 

combination with other anticancer agents has been previously reported for 

both solid tumors and hematological malignancies (1-49).  Evidence for the 

antiproliferative properties of β-thujaplicin has been previously reported in 

multiple cell lines including malignant melanoma, stomach cancer, and 

prostate cancer at micromolar levels (50-55).  The cellular reduction of the 

yellow tetrazolium compound, MTS, into soluble purple formazan is 

accomplished by dehydrogenase enzymes found only in metabolically active 

cells (56, 57). Thus, we employed this MTS assay to evaluate cancer cell line 

selective cytotoxicity in ten human cell lines: HT29 and HCT116 colon cancer 

cell lines; BXPC3 pancreatic cell line; MCF-7 and MCF-10A breast cell lines; 

Jurkat acute T-cell leukemia cell line; HuT-78 cutaneous T-cell lymphocytes 

(CTCL); U87 glioblastoma cell line; A549 lung cancer cell line; and normal 

adult human dermal fibroblasts (hdF).  

The focus of this chapter is to comprehensively evaluate cytotoxicity in 

multiple cell lines and determine the cell lines that are the most sensitive to 

inhibition by the tropolones. Assays were performed in triplicate and assay 

data werecompared to published data for the experimental control, SAHA, 
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when possible (1-5). Detailed experimental methods for cell culturing and cell 

viability assays are in sections E and F respectively of the Materials and 

Methods Chapter. Standard errors values are reported in Sections 6 and 7 of 

the Appendix.   

B. Evaluation of cancer cell line selective cytotoxicity in solid tumors 

It is well established that HDACi are able to inhibit a diverse panel of 

solid tumor cell lines as well as hematological cell lines (1-49). Inhibition of 

solid tumors by SAHA and TSA has been reported for the primary breast 

adenocarcinoma cell line, MCF-7 (1, 14-17), and two primary colon 

adenocarcinoma cell lines, HCT-116 (3, 18-25), and HT-3, 22, 24).  

Overexpression of HDAC1, -2, and -3 has been reported in colorectal 

carcinomas (56-58). Increased expression of class IIa HDACs has been 

correlated with reduced survival in estrogen receptor-positive (ER+) breast 

cancer patients (26). Aberrant expression of HDAC1, HDAC2, and HDAC7 

has been observed in pancreatic cancer cells (27). TSA has been shown to 

inhibit the BXPC3 pancreatic cancer cell line in the submicromolar levels (28). 

Glioblastomas are the most common, most aggressive, and most 

chemoresistant type of brain tumors (31). TSA has also been shown to inhibit 

the growth of U87 cells presumably by altering the HDAC1 levels (31). MCF-

10A cells are spontaneously immortalized ‘normal’ breast epithelial cell lines 

that have been shown to exhibit no signs of terminal differentiation or 
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senescence (59).  The antiproliferative effects of SAHA on the MCF-10A cell 

line have been reported (1, 16). Structurally diverse HDACi, including SAHA, 

have been shown to inhibit the growth of the A549 lung cancer cell line (32, 

34-36).  

We performed cytotoxicity studies in these seven human solid tumor 

cell lines: HT29, HCT116, BXPC3, MCF-7, MCF-10A, U87, and A549.  The 

cancer cell growth inhibitory results was proportional to HDAC inhibition data 

particularly given that the unsubstituted tropolone, compound 1, and the 

methylated tropolone, compound 11, exhibited poor inhibition of all solid 

tumor cell lines (Table 1). The alpha-substituted tropolones were generally 

more potent than the beta-substituted tropolones in all seven solid tumor cell 

lines. Surprisingly, the tropolones and SAHA were more active in the MCF-

10A cell line than the more differentiated MCF-7  breast cell line; perhaps 

indicating a better prognosis for early onset treatment of breast cancer versus 

treatment at a more advanced stage (60).  However, given recent trends in 

cell line contamination and cell-specific genomic alterations associated with 

breast cell lines, we cannot rule out the possibility that the integrity of the 

MCF-10A cells may be compromised (61-63).  
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Table 1: Evaluation of cancer cell line selective cytotoxicity in solid tumors 

Compound  GI50  (μM), 72h 

Solid Tumors 

HCT116  HT-29 BXPC-3  A549 U87 MCF-7 MCF-10A 

SAHA 2.50 5.17 5.56 43.66 39.12 29.45 2.70 

1 63.73 >100 >100 >100 >100 85.28 3.31 

2 15.24 >100 29.39 >100 >100 91.48 33.17 

3 32.06 75.40 17.13 >100 >100 >100 17.50 

4 56.99 56.99 35.93 85.53 >100 >100 26.50 

5 46.65 46.70 14.06 57.60 >100 >100 21.70 

6 34.98 35.00 21.16 75.00 >100 >100 34.00 

7 53.44 >100 18.49 69.20 >100 >100 2.90 

8 43.67 43.70 91.57 52.40 >100 >100 13.30 

9 >100 >100 34.79 53.44 >100 >100 38.81 

10 6.92 92.00 18.50 52.00 >100 >100 1.90 

11 >100 >100 >100 >100 >100 >100 85.38 

12 62.61 >100 43.02 38.00 >100 >100 4.44 

13 26.86 >100 >100 25.68 >100 84.62 5.07 

14 >100 >100 >100 36.00 >100 >100 21.00 
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Alternatively, the tropolones showed relatively poor inhibition of the 

A549 cells and had half maximal growth inhibition (GI50) values in U87 cells 

that were greater than 100 micromolar.  The gastrointestinal cancer cell lines, 

BXPC3, HCT116 and HT-29, seemed to be the most sensitive to inhibition by 

the tropolones. The tropolones were particularly cytotoxic in the BXPC3 and 

HCT116 cell lines with mean GI50 values of 32 µM and 40 µM respectively. 

These observations have prompted further investigation on the 

antiproliferative effects on cell cycle progression in BXPC3 and HCT116 cell 

lines by the tropolones which will be discussed in subsequent chapters. 

 

 Figure 1: Evaluation of cancer cell line selective cytotoxicity in solid tumors 
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C. Evaluation of cancer cell line selective cytotoxicity in hematological 

cell lines and normal dermal fibroblasts  

  The benefits of HDAC inhibitors (HDACi) in the treatment of 

hematological malignancies are supported by the fact that both SAHA and 

Romidepsin were approved by the FDA for the treatment of cutaneous T-cell 

lymphoma (CTCL) (2, 4, 8-10, 33, 39, 42, 45-47). Overexpression of HDAC-1, 

-2 and -6 has also been reported in CTCL (33). Inhibition of the growth of 

Jurkat T-leukemia and HuT-78 cells by SAHA and other HDACi has been 

reported (2, 4, 5, 28). We have previously reported that the beta-substituted 

tropolones show selective inhibition of proliferating cells in cancerous tissues 

versus normal adult human dermal fibroblasts (hDF) (50). Therefore, we 

further explored the cytotoxicity of the tropolone library in the normal 

fibroblasts, hDF, and the two hematological cell lines, Jurkat and HuT-78. The 

cell growth inhibitory results was proportional to HDAC inhibition data 

particularly given that the methylated tropolone, compound 11, exhibited poor 

inhibition of both the Jurkat and HuT-78 cell lines (Table 2).  
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Table 2: Evaluation of cancer cell line selective cytotoxicity in hematological cell 
lines and normal fibroblasts. 

Compound  GI50  (μM), 72h 

Hematological  Normal 

Jurkat HuT-78  hDF 

SAHA  0.90 2.10  18.95 

1  12.21 43.02  >100 

2  3.33 7.83  96.46 

3  1.15 4.11  93.07 

4  0.62 2.87  >100 

5  0.76 3.05  >100 

6  1.86 4.74  >100 

7  0.67 4.14  12.40 

8  4.62 8.95  >100 

9  5.89 17.09  >100 

10  1.10 4.99  >100 

11  >100 >100  >100 

12  4.45 13.11  >100 

13  0.59 3.25  >100 

14  6.30 11.36  >100 
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Tropolones, like many HDACi, show preferential inhibition of the 

hematological malignancies, as evidenced by the fact that most of the 

tropolones had GI50 values in the very low micromolar range (Figure 2).  

 

Growth inhibition was more pronounced in the Jurkat cells but the GI50 

values were still relatively potent in the HuT-78 cells particularly when compared 

to the solid tumor cell lines or the dermal fibroblasts (Figure 3). For example, 

compound 2 showed a 12-fold selectivity towards HuT-78 cells and a 30-fold 

selectivity towards Jurkat cells when compared to hDF cells. The alpha-

substituted tropolones were slightly more potent than the beta-substituted 

compounds in both hematological cell lines. For example, compounds 5 and 9 

have a dimethoxyl phenyl functional group substituted at the alpha and beta 
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positions respectively; but compound 5 had lower GI50 values of 0.76 µM and 

3.05 µM in Jurkat and HuT-78 cells respectively whereas compound 9 had GI50 

values of 5.89 µM and 17.09 µM respectively in the two hematological cell lines. 

 Interestingly, SAHA and compound 7 were the only compounds to 

significantly inhibit growth of the hDF cells with GI50 values of 18.95 µM and 

12.40 µM respectively. This observation is promising in the pre-clinical 

development of tropolones since many anticancer drugs currently in clinical 

development are cytotoxic agents with low therapeutic index acting non-

selectively against proliferative cells of both cancerous and normal tissues (37). 

Furthermore, it may be inferred that SAHA and other broad-spectrum HDACi 

can modulate the acetylation status of a wide range of protein targets leading to 

undesired toxic effects (8-10, 39, 44-47). Therefore, the development of more 

selective isoform-selective HDACi, like the tropolones, could result in improved 

therapeutic efficacy in cancer treatment as well as improved pharmacokinetic 

profiles.  
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Figure 3: Evaluation of cancer cell line selective cytotoxicity in hematological cell 

lines and normal human adult dermal fibroblasts 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

87 

 

 

 

 

 

 

 

 

 

D. Conclusions 

The benefits of HDACi as anticancer agents have been widely explored 

resulting in FDA approval of vorinostat and romidepsin for the treatment of 

CTCL. Many HDACi are currently in preclinical and clinical development for the 

treatment of cancer. Given these developments, we explored cell line selective 

cytotoxicity of tropolones presumably as a result of HDAC inhibition. We 

observed a correlation between HDAC inhibition and cancer cell line growth 

inhibition particularly given that the methylated tropolone, compound 11 inhibited 

all of the cell lines relatively poorly when compared to the rest of the library. 

Tropolones also display cancer cell line selective cytotoxicity as evidenced by 
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preferential inhibition of the two hematological cell lines, Jurkat and HuT-78. The 

nature and position of substituents on the tropolone ring seems to be critical in 

inducing growth inhibition since the unsubstituted tropolone, compound 1, 

inhibited all of the cell lines relatively poorly when compared to the rest of the 

library. There was also a correlation between increased hydrophobicity and 

more potent cytotoxicity; furthermore, the alpha-substituted tropolones seemed 

to be slightly more potent than the beta-substituted compounds in all cell lines. 

Additionally, it seems that selective HDAC inhibition may result in reduced 

toxicity profiles as evidenced by the fact that with the exception of compound 7, 

none of the tropolones showed significant inhibition of the normal dermal 

fibroblasts unlike the pan HDAC inhibitor, SAHA (GI50 = 18.95 µM).  It may be 

deduced that SAHA and other broad-spectrum HDACi can modulate the 

acetylation status of a wide range of protein targets leading to undesired toxic 

effects. Thus, the development of more selective isoform-selective HDACi, like 

the tropolones, could result in improved therapeutic efficacy while reducing toxic 

effects.   
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Chapter 5  

Assessment of histone and tubulin modulation 

A. Introduction 

Modulation of chromatin structure is critical in the regulation of 

transcription (1-21). The amino terminal tails of the core histones (H2A, H2B, 

H3 and H4) undergo various post-transcriptional modifications, including 

methylation, acetylation and phosphorylation (3-4; 8-14). Histone acetylation 

is considered to be the most studied posttranslation modification of 

nucleosomes (2, 3). In fact, a recent global proteomic analysis has revealed 

more than 1700 protein substrates of HDACs including histones and 

structural proteins like tubulin (Figure 1; 13-14). Furthermore, accumulation of 

acetylated histones has been demonstrated as one of the molecular 

mechanisms for HDAC inhibition (3, 14-18). Therefore in this chapter, we will 

explore the modulation of histones and tubulins as a result of HDAC inhibition 

by the tropolones. 
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Figure 1: Illustration of the multiple roles of HDACs in cells (14).  

 

B. Initial assessment of histone hyperacetylation in HT-29 colon cancer 

cells 

In collaboration with Dr. Cassandra Godman, a former member of the 

Giardina laboratory here at the University of Connecticut, our preliminary 

assessment of histone hyperacetylation was conducted in HT-20 colon 

cancer cells after a 24h treatment with 40 µM compound 9 (DWI) via Western 

blot analysis. Four millimolar of the broad spectrum fatty acid HDACi, butyric 

acid (BA), served as experimental control. Following treatment, a 3-part 

protein extraction was performed and the nucleolar fraction was run on a 
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12.5% SDS gel, transferred overnight, and probed for acetyl-specific histones. 

Compound 9 showed some specificity to certain acetyl marks since no 

differences were observed in either the acetylated Histone H4 Lysine 12 

(H4K12Ac) or H3K18Ac but the results showed hyperacetylation of H3K9 and 

H3K23 (Figure 2). Moreover, it has been demonstrated that the deacetylation 

of H3K9 is required for proper chromosome condensation and H3K9 levels 

are reduced in mitotic cells (4, 16-18). These results show that the tropolones 

display selectivity towards acetyl-specific histones and may not be pan 

HDACi like many HDACi including BA and SAHA.  

 

 

 

 

 

 

 

Figure 2: Western blot analysis of Compound 9 (DW-I) and butyric acid (BA). 
The graphs represent the quantification of the triplicate gel using ImageJ 
software.  
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C. Investigation of histone modulation in Jurkat cells 

Based on the fact that Jurkat and HuT-78 cells were the most sensitive 

to treatment by tropolones, we investigated hyperacetylation of key lysine 

residues on histones in these two hematological cell lines. Acetylation of 

histone H3 at lysine9 (K9) has been shown to be essential for histone 

deposition and chromatin assembly (4, 18).  Hyperacetylation of H3K9 is also 

associated with an increase in the expression of the cyclin-dependent kinase 

inhibitors (CDK), p21 & p27 that play important roles in cell cycle progression 

(20).  Acetylation of histone H4 particularly at lysine12 (K12) has been 

correlated with HDAC2 inhibition in CTCL and regulation of telomeric 

hereochromatin plasticity in yeast cells (3, 21). Furthermore, it has been 

reported that in vivo HDAC8 inhibition leads to hyperacetylation of histones 

H3 and H4 (19).  Given these observations and our biochemical data that 

shows that tropolones selectively target HDAC2 and HDAC8, we decided to 

conduct a comprehensive analysis of the hyperacetylation of specific lysine 

residues on histones H3 and H4.   

Our initial assessment of histone hyperacetylation in the hematological 

cell lines was conducted in Jurkat cells after a 12h treatment via flow 

cytometric analyses by sequentially incubating treated cells with primary 

antibodies for histone H4 and H4K12Ac followed by treatment with secondary 

antibodies conjugated with a fluorescein isothiocyanate (FITC). Flow 

cytometry has been shown to be a convenient method for evaluating 
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epigenetic alterations (22-25). We determined geometric mean fluorescence 

intensities (GMFI), equivalent to the median cell population, for each 

treatment with the aid of the FlowJo Workstation (26-28). Epigenetic 

alterations were measured at multiple time points and/or multiple 

concentrations when possible. We also compared our data for our 

experimental control, SAHA, to published values for histone hyperacetylation 

when possible (3, 20). Detailed methods for flow cytometric analyses are in 

Section G of the Materials and Methods chapter. We compared global 

hyperacetylation of histone H4 to specific hyperacetylation of histone H4 

lysine12 (K12) for a more quantitative analysis of the modulation of specific 

histone hyperacetylation (Table 1). Histograms for the modification of H4 and 

additional histograms for H4K12Ac evaluation are in the Appendix, Section 8. 

Modulation of histone H4 by the tropolones and SAHA were within the 

same range as the untreated control (Table 1). However, modulation of the 

specific lysine residue on histone H4K12, varied between the untreated 

control and the HDACi (Table 1; Figure 2). In fact, SAHA exerted more than 

10-fold increase in the modulation of H4K12Ac. The tropolones exhibited at 

least a 2-fold increase in hyperacetylation of H4K12 with the alpha 

dimethoxyphenyl tropolone (compound 5) and the natural product (compound 

10)  inducing a corresponding 6-fold increase in H4K12 hyperacetylation, the 

highest among the tropolones.  
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Table 1: Evaluation of histone hyperacetylation in Jurkat and HuT-78 cells after a 12h 
treatment with 10 µM HDACi 

Treatment Jurkat, GMFI 

H4 H4K12Ac H4K12/H4 ratio 

Control 1.50 7.13 4.8 

SAHA 2.04 100.00 49.0 

        Compound 2 1.88 33.50 17.8 

        Compound 5 1.75 42.20 24.1 

        Compound 7 2.17 13.10 6.0 

        Compound 9 1.88 25.70 13.7 

Compound  10 2.04 45.40 22.3 

Compound 11 1.87 25.20 13.5 

Compound 13 2.08 34.00 16.4 

Compound 14 1.86 34.90 18.8 

 

Furthermore, we investigated global (H4 acetylation) and specific 

(H4K12Ac) hyperacetylation for more quantitative comparative analysis. 

Similar to our observations on H4K12Ac modulation alone, we found that the 

H4K12Ac/H4 ratio was the highest in cells treated with SAHA followed by 

compound 5 and compound 10. Interestingly, the beta-phenyl (compound 7) 

and the methylated tropolone (compound 11) exhibited the lowest 

H4K12Ac/H4 ratio indicating that the tropolones show selectivity towards 
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acetyl marks depending on the nature and position of the substituents on the 

tropolone ring.  

 

Figure 2: Evaluation of the modulation of H4K12Ac in Jurkat cells. Note that 
histograms represent the untreated control (red) superimposed with the HDACi 
treatment (blue) for comparative analysis. 

  
 
a) SAHA      b) Compound 2 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

101 

 

c) Compound 5      d) Compound 7 

 

 

e) Compound 9     f) Compound 10 
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g) Compound 11     h) Compound 13 

 

 

 

i) Compound 14 
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Given our promising results at a 10 µM concentration, we decided to 

evaluate time effects as well as the effects of a higher concentration of the 

tropolones on the modulation of H4K12Ac in Jurkat cells. We followed up our 

12h analysis with a 4h treatment using a higher inhibitor concentration, 25 µM 

tropolones, in Jurkat cells (Table 2); histograms for this analysis are in the 

Appendix, Section 9. It should be noted that we did not evaluate SAHA at 25 

µM due to excessive cell death. However, we did not observe any significant 

hyperacetylation by any of the tropolones; for example, compounds 2 and 7 

had GMFI values of 5.56 and 5.02 which were less than the untreated control 

(5.87).  Compound 13 was the only tropolone to have a slightly higher value 

(7.78) than the untreated control prompting further investigation after a longer 

treatment period. Moreover, SAHA had a GMFI of 4.11 which was within the 

same threshold as the untreated control suggesting that a 4h period may not 

be sufficient for the accumulation of histones.  

 

 

Table 2: Modulation of H4K12Ac in Jurkat cells after 4h treatment with HDACi. Note: All HDACi at 
25 µM except for SAHA which is at 10 µM. 

 

Treatment 

(H4K12Ac, 4h) 

GMFI in Jurkat cells 

Control SAHA 2 5 7 9 10 11 13 14 

5.87 4.11 5.56 5.18 5.02 3.84 4.56 4.05 7.78 3.69 
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We also evaluated the effects of a 25 µM concentration of the 

tropolones on H4K12Ac modulation after a 12h treatment period (Table 3); 

histograms for this analysis are in the Appendix, Section 10.  Assay data 

strongly suggest that evaluation of the tropolones at a 25 µM concentration 

did not result in more significant hyperacetylation of H4K12 after a 12h 

treatment in Jurkat cells; for example, compounds 5, 10 and 13 had GMFI 

values of 18.3, 18.6 and 18.8 respectively compared to 18.0 in the untreated 

control. We hypothesize that the higher concentration of the tropolones may 

result in an arrest of the S-phase (DNA synthesis) in Jurkat cells but we will 

further explore this observation via cell cycle analysis in Chapter 6. 

Furthermore, a higher concentration of the tropolones may have resulted in 

increased cell death thus reducing the percentage of intact cells available for 

response to treatment by H4K12Ac antibodies in Jurkat cells. Interestingly, 

the methylated tropolone, compound 11, that typically exerts the lowest 

activity among the tropolones, exerted the highest propotion of histone 

hyperacetylation. Based on our growth inhibition data (Chapter 4), it may be 

possible that compound 11 was the least cytotoxic in Jurkat cells thus 

resulting in a higher percentage of intact cells to respond to treatment by 

H4K12Ac antibodies.  
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Based on our promising results with a 10 µM treatment, we 

investigated the ability of 10 µM treatments of the tropolones and SAHA to 

hyperacetylate H3K9Ac levels after a 12h incubation period in Jurkat cells 

via FACS analysis (Table 4). Corresponding histograms are in Section 11 

of the Appendix. 10 µM SAHA induced a 10-fold increase in the 

modulation of H3K9Ac antibodies when compared to the untreated 

control. Alternatively, compounds 2, 5, 9, and 13 were the only tropolones 

that activated a two-fold increase; the rest of the tropolones were within 

the same threshold as the untreated control. These observations suggest 

that tropolones could be isoform-selective HDACi since they show 

selectivity towards promoter-specific histone residues unlike the pan-

HDACi SAHA that exerted a 10-fold increase in hyperacetylation of both 

H3K9Ac and H4K12Ac antibodies.  

 

 

Table 3: Modulation of H4K12Ac in Jurkat cells after 12h treatment with 25 µM tropolones 

 
Treatment 
(H4K12Ac, 12h) 

GMFI in Jurkat cells 

Control 2 5 7 9 10 11 13 14 

18.0 21.0 18.3 17.8 24.3 18.6 46.0 18.8 17.2 
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We followed up our assessment of the hyperacetylation of H3K9 

levels in Jurkat cells with an evaluation of the modulation of H3K23Ac in 

Jurkat cells after a 12h treatment with 10 µM HDACi (Table 5). 

Corresponding histograms are in the Appendix, Section 12. With the 

exception of SAHA, compounds 2, 7, and 14, the rest of the compounds 

had GMFI values lower than the untreated control. SAHA exerted almost a 

two-fold increase in hyperacetylation (36.90 vs. 20.20) whereas 

compounds 2, 7 and 14 had slightly higher values than the untreated 

controls (24.6, 24.0 and 27.2 respectively). Once again, we can deduce 

that the tropolones show selectivity towards acetyl-specific histones in 

Jurkat cells.   

 

 

 

Table 4: Modulation of H3K9Ac in Jurkat cells after 12h treatment with 10 µM.HDACi 

 

Treatment 

(H3K9Ac, 12h) 

GMFI in Jurkat cells 

Control SAHA 2 5 7 9 10 11 13 14 

5.91 61.70 13.70 14.20 2.12 15.50 8.19 3.23 14.70 7.91 
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D. Investigation of histone modulation in HuT-78 cells  

Given our promising results in Jurkat cells, we also evaluated the 

modulation of H3K9Ac and H4K12Ac antibodies in HuT-78 cells following a 

12h treatment with 10 µM HDACi via FACS analysis (Table 6). Corresponding 

histograms are in the Appendix, sections 13 and 14. Similar to our data in 

Jurkat cells, the tropolones were more sensitive to H4K12Ac treatment than 

H3K9Ac. Compound 9 exerted almost a 2-fold increase in H4K12 (84.40 vs. 

51.00 in the untreated control). Alternatively, compound 9 had a lower GMFI 

value for H3K9Ac modulation than the untreated control (20.90 vs. 29.20).  

SAHA treatment resulted in slightly more than a 2-fold increase in HuT-78 

cells that is notably less than the 10-fold increase we observed in Jurkat cells 

indicating cell line selectivity towards both H3K9 and H4K12 hyperacetylation. 

Concurrently, the tropolones seem to also be more sensitive to both H3K9Ac 

and H4K12Ac treatment in Jurkat cells than in HuT-78 cells; this observation 

Table 5: Modulation of H3K23Ac in Jurkat cells after 12h treatment with 10 µM HDACi 

 

Treatment 

(H3K23Ac, 12h) 

GMFI in Jurkat cells 

Control SAHA 2 5 7 9 10 11 13 14 

20.20 36.90 24.60 18.30 24.00 17.20 17.50 17.80 17.80 27.20 
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also matches the cellular data that we have previously obtained on growth 

inhibition (Chapter 4). 

 

Table 6: Comparative analysis of histone modulation  in HuT-78 cells treated with 10 
µM HDACi after a 12h treatment 

Treatment   GMFI in HuT-78 cells 

H3K9Ac  H4K12Ac  

Control  29.20  51.00  

SAHA  72.40  111.00  

 Compound 2  17.40  58.20  

Compound 5 16.40 56.00 

Compound 7  18.80  56.10  

Compound 9 21.00 84.40 

Compound 10 18.60 61.20 

Compound 11 18.10 47.00 

Compound 13 21.50 63.40 

Compound 14 20.90 61.90 

 

We also investigated H3K23Ac modulation in HuT-78 cells after a 

24h treatment period in order to evaluate if a longer treatment period may 

lead to a higher accumulation of histones by the tropolones. 

Corresponding histograms are in the Appendix, Section 15. Compound 14 
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exerted the most significant hyperacetylation of H3K23 antibodies with 

approximately a 1.6 fold increase compared to the untreated control. 

While the rest of the tropolones were within close range to the untreated 

control, SAHA exerted more than a 5-fold increase in H3K23 

hyperacetylation. These results suggest once again that tropolones show 

selectivity towards acetyl-specific histone acetylation whereas SAHA is a 

broad-spectrum HDACi.  

 

E. Investigation of tubulin modulation in Jurkat and HuT-78 cells 

HDAC6, a class IIb isozyme, is a unique HDAC with two catalytic 

subunits and a C-terminal zinc finger domain (29-32). HDAC6 resides mainly 

in the cytoplasm and regulates many important biological processes, 

including cell migration and degradation of misfolded proteins (29-32).Many 

cell movements are mediated by the microtubule, which is made up of 

globular tubulin subunits (α, β, and γ), with the α/β-tubulin heterodimers 

forming the tubulin subunit common to all eukaryotic cells (29, 30-32). 

Table 7: Modulation of H3K23Ac in HuT-78 cells after 24h treatment with 10 µM HDACi 

 

Treatment 

(H3K23Ac, 24h) 

GMFI in Jurkat cells 

Control SAHA 2 5 7 9 10 11 13 14 

24.0 133.0 22.1 28.3 28.2 22.4 25.5 25.1 34.7 37.4 
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HDAC6, has been shown to deacetylate the structural protein, α-tubulin at 

lysine40 (K40), resulting in a modulation of cell motility (16, 29, 32). 

 Evaluation of inhibition constants (Ki ) obtained for HDAC6 (Chapter 3) 

indicate that the tropolones exhibited poor inhibition of this isozyme (Table 8). 

In fact, with the exception of compound 2 (Ki   = 527 nM), the inhibition 

constants for the tropolones were greater than 2500 nM. Hence, we predicted 

that the tropolones will weakly modulate the acetyl-specific tubulin, Ac-α-tub-

K40, in Jurkat and HuT-78 cells and tested our hypothesis after a 12h 

treatment with 10 µM HDACi via FACS analysis. We used 10 µM 

concentrations because it resulted in significantly low cell death compared to 

higher concentrations thus allowing for a more precise evaluation of cellular 

effects. We compared our results to published data for tubulin modulation by 

our experimental control, SAHA (33). Detailed experimental methods are in 

Section G of the Materials and Methods chapter. Corresponding histograms 

are in sections 16 and 17 of the Appendix.  

We found that SAHA activated about a 10-fold increase in tubulin 

hyperacetylation in both Jurkat and HuT-78 cells when compared to the 

untreated control (Table 8; Figure 3). On the other hand, our compounds 

modulated tubulin within the threshold of the untreated control. In fact, many 

of the tropolones, such as compounds 2 and 7, had lower GMFI values for 

Ac-α-Tub-K40 modulation than the untreated control. However, selective 
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inhibition of class I HDAC enzymes, particularly HDAC8, is also associated 

with weak tubulin modulation (34); conversely, pan-HDACi and HDAC6-

selective HDACi show significant tubulin modulation as a result of HDAC6 

hyperacetylation (30, 33, 34).  Therefore, these observations support our 

biochemical data that shows very poor inhibition of HDAC6 by the tropolones 

and lends support to our claim on the isoform-selective nature of HDAC 

inhibition by the tropolones. 

Table 8: Comparative analysis of tubulin modulation and HDAC6 inhibition. Note: 
Not applicable (N.A.); Not determined (N.D.) 

Treatment Tubulin modulation  
(10 µM HDACi) 

HDAC6  enzyme 
Inhibition (Ki , nM) 

Jurkat, GMFI HuT-78, GMFI 

Control  5.38 18.20 N.A. 

SAHA  54.20 177.00 3.02 

Compound 2  2.89 13.40 527 

Compound 5 2.75 N.D. >2500 

Compound 7 1.89 13.20 >2500 

Compound 9 6.71 17.30 >2500 

Compound 10 2.14 9.21 >2500 

Compound 11 3.74 12.80 >2500 

Compound 13 6.57 2.52 >2500 

Compound 14 6.2 11.60 >2500 
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Figure 3: Comparative analysis of tubulin modulation and HDAC6 inhibition 

 

F. Conclusions 

Accumulation of histones and non-histone proteins such as tubulin are 

validated mechanisms of HDAC inhibition. Therefore, we conducted a 

comprehensive investigation of the hyperacetylation of a panel of acetyl-

specific histones and tubulins in HT29, Jurkat and HuT-78 cells. Our 

compounds were the most sensitive to treatment in Jurkat cells and activated 

hyperacetylation of H4K12Ac; some of our compounds responded to H3K9Ac 

and H3K23Ac whereas SAHA responded with at least a 2-fold increase in 

hyperacetylation for all the promoter-specific histones. BA, an experimental 

control for our HT29 data, showed the same trend indicating that both HDACi 
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are pan-HDACi unlike the tropolones which showed selectivity to promoter-

specific histones. Furthermore, we conducted a comparative analysis of 

tubulin modulation and HDAC6 inhibition and we found that our compounds 

did not significantly induce hyperacetylation of Ac-α-tub-K40 unlike SAHA that 

activated a ten-fold increase in tubulin hyperacetylation in both HuT-78 and 

Jurkat cells. Our cellular data on tubulin hyperacetylation correlates with our 

biochemical data that showed weak inhibition of HDAC6.  Overall, our 

comprehensive analysis of tubulin and histone modulation lends support to 

our claim on the isoform nature of HDAC inhibition by the tropolone library. 
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Chapter 6  

Elucidating the antiproliferative effects of tropolones on cell cycle progression 

A. Introduction 

The cell cycle is a precisely programmed series of events that enables 

a cell to duplicate its contents and generate two daughter cells (1). The 

machinery that constitutes the cell cycle clock (2; Figure 1) operates on a 

similar level in all cell types throughout the body (1, 2).  The cell cycle clock 

uses a subfamily of serine/threonine protein kinases, known as the cyclin-

dependent kinases (CDK), to execute the various steps of the cell cycle.                               

                                      

 

 

 

 

 

 

Figure 1: Depiction of cell cycle machinery (2).                         
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A newly formed cell either retreats to a quiescent stage, G0, or initiates a 

new round of active growth and division, collectively termed proliferation. Unlike 

the accumulation of RNA and proteins which is initiated immediately, DNA 

synthesis is deferred for 12-15 hours resulting in the 1st gap of the cell cycle 

known as G1. Following G1, DNA synthesis (the S phase), typically takes 6-8 

hours to reach completion. Before cells can proceed to the M phase (mitosis), 

there is a second gap, termed G2, typically lasting 3-5 hours, in which cells 

further prepare for entry into mitosis into the M phase (mitosis).    

Cell cycle deregulation is recognized as the hallmark of cancer 

progression in most malignant tumors (3).  HDAC inhibitors (HDACi) of various 

structural classes have been shown to induce G1, S phase and/or G2/M arrest 

and concurrently disrupt mitotic progression in proliferating cells in normal and 

malignant tissues (4-25). The natural product, hinokitiol (compound 10), has 

been reported to induce arrest of the G1 phase of the cell cycle in malignant 

melanomas presumably as a result of association with the CDK inhibitor, p27 ( 

26). Therefore, the focus of this chapter is to evaluate the antiproliferative 

effects of our tropolone library on cell cycle progression in the four cell lines that 

were the most sensitive to treatment by tropolones via flow cytometric analyses.  

The use of fluorescent activated cell sorting  (FACS) in flow cytometry 

allows for fast, objective and quantitative measurements on apoptotic cells when 

compared to the classic methods of morphological examination by electron 
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microscopy or DNA ladder formation by gel electrophoresis (27). The amount of 

bound fluorescent dye, typically propidium iodide, in a given cell is correlated 

with the DNA content in the cell (27-30); thus, percentages of cell populations in 

each cell cycle phase were calculated based on DNA content histograms with 

the aid of the FlowJo Analysis Workstation (Tree Star, Inc.). Furthermore, when 

represented on frequency histograms, DNA fragmentation in apoptotic cells is 

characterized by a distinctive sub-G1 peak which represents oligonucleosomal 

DNA fragments and exhibits a fluorescent intensity lower than that of G1 cells 

(27-30). Cell cycle analysis was performed at multiple time points and/or multiple 

concentrations when possible. We compared our data with published reports of 

cell cycle analysis for the experimental control, SAHA, when possible (22-24).  

With the exception of the 12h time-point for the Jurkat cells, corresponding 

histograms for cell cycle analyses are in sections 18-22 of the Appendix.  

B. Elucidation of antiproliferative effects in HCT116 colon cancer cells 

Initial assessment of the antiproliferative effects of tropolones on cell cycle 

progression was conducted in HCT116 colon cancer cells at two different 

concentrations (10 µM and 50 µM) after a 24h incubation period via flow 

cytometric analyses. 10 μM SAHA served as experimental control. It should be 

noted that a higher concentration of SAHA could not be evaluated since it 

resulted in excessive cell death that significantly altered the cell cycle profiles 

and reduced data accuracy. Based on cytotoxicity data, four compounds (2, 7, 12 
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and 13) were chosen for FACS analysis (Table 1).  An increase in the sub-diploid 

peak (<G0/G1) that is indicative of apoptosis was observed for both the 10 µM 

and 50 µM treatments for the tropolones.  However, the antiproliferative effects of 

tropolones on cell cycle progression seem to be concentration-dependent since a 

higher percentage of cells in both the sub-G0/G1 phase and the G1 phase were 

observed at a concentration of 50 µM compared to a 10 µM concentration.  In 

fact, treatment with 50 µM of compound 13 resulted in the most significant G1 

arrest since 77.3% of cells were observed in the G1 stage compared to 48.3% in 

the untreated control, 47.5% in the 10 µM treatment of compound 13, and 51.2% 

in the 10 µM SAHA treatment. 

 G1 arrest is typically associated with increased growth inhibition and 

concurrently decreased DNA synthesis (31). G1 arrest is also associated with 

increased expression of the cyclin-dependent kinase inhibitor (CDKI), p21, 

indicating that the anti-proliferative effects of SAHA and compound 13, may be 

arbitrated by changes in the expression of CDKI (23. 24). Correspondingly, a 

decrease in the S and G2-M phases was also observed for the treatment with 50 

μM compound 13 and SAHA. Conversely, 50 µM of compound 12 was the only 

compound that activated an increase in the population of cells in the G2-M phase 

since 27.1% of cells were observed in the G2-M phase compared to 21% in the 

untreated control, 19.1% in the 10 µM treatment of compound 12, and 17.3% in 

the 10 µM SAHA treatment. Increased G2-M arrest is associated with enhanced 

apoptosis (31). 
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Compound 2 at a 10 µM concentration and compound 3 at both 

concentrations were the only compounds to activate an S-phase arrest. 

However, at a 10 μM concentration in HCT116 cells, the tropolones did not 

exhibit any notable cellular effects indicating that further modifications to the 

Table 1: Cell-cycle distribution as measured via FACS analysis after a 24h 
treatment in HCT116 cells. 

Treatment 24h 

<G0/G1 %G1 %S %G2-M 

Control 2.06 48.30 24.60 21.00 

10 µM SAHA 13.60 51.20 9.90 17.30 

10 μM Compound 2 5.15 50.00 23.30 11.40 

50 μM Compound 2 6.99 51.50 28.10 6.04 

10 μM Compound 3 6.40 51.80 30.50 5.11 

50 μM Compound 3 9.64 43.60 32.10 1.43 

10 μM Compound 7 3.98 51.00 19.50 18.80 

50 μM Compound 7 6.58 55.00 21.10 2.22 

10 μM Compound 12 2.80 44.30 15.40 27.10 

50 μM Compound 12 2.97 50.30 19.10 19.10 

10 μM Compound 13 3.06 47.50 22.70 18.50 

50 μM Compound 13 5.72 77.30 9.10 3.99 
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current tropolone scaffold may be needed in order to exert more potent cellular 

effects at lower concentrations in these solid tumor cells.  

C. Elucidation of cell cycle progression in BXPC3 cells  

SAHA induced a more significant cell cycle arrest in BXPC3 pancreatic 

cells than the tropolones after a 12h incubation period. Specifically, SAHA 

treatment resulted in an increase in the population of cells in the sub-G0/G1 

phase and G2/M phase; concurrently, SAHA treatment also decreased the 

percentage of cells in the G1 phase and the S phase. Conversely, the distribution 

of DNA content by ten tropolones (Compounds 2, 3, 5,7, 9-14)  essentially 

resembled that of the untreated control; although on average, there was a lower 

percentage of cells in the G1 phase and more cells in the S phase and G2-M 

phase. 

Furthermore, there was no significant arrest of the sub-G0/G1 phase of 

the cell cycle by either SAHA or the tropolones. Given that arrest of the sub-

G0/G1 phase of the cell cycle is usually seen as an index for apoptosis (27-30), it 

may be deduced that these HDACi may not significantly induce apoptosis in 

BXPC-3 cells after a 12h incubation period. However, these observations 

correlate with data from the cancer cell line selective cytotoxicity assays (Chapter 

5) in which the HDACi showed the most pronounced antiproliferative effects in 

the hematological cell lines. In a similar manner to the HCT116 colon cancer 
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cells, it may be possible that a higher concentration and/or a longer treatment 

period may result in more pronounced effects in the BXPC3 cell line.  

 

Table 2: Elucidation of the antiproliferative effects of tropolones on cell cycle 
progression as measured via FACS analysis after a 12h treatment in BXPC3 cells.  

Treatment  12h 

%<G0/G1 %G1 %S %G2-M 

Control 1.21 67.20 7.44 11.30 

10 μM SAHA 3.55 59.60 2.92 15.90 

10 μM Compound 2 1.44 58.10 11.00 10.70 

10 μM Compound 3 0.81 69.10 7.60 10.50 

10 μM Compound 5 0.59 59.70 9.44 12.10 

10 μM Compound 7 0.96 60.50 9.89 10.90 

10 μM Compound 9 0.99 63.40 8.01 11.70 

10 μM Compound 10 1.67 63.20 8.45 11.00 

10 μM Compound 11 1.90 60.50 10.30 10.90 

10 μM Compound 12 0.59 57.90 11.10 10.70 

10 μM Compound 13 0.62 66.80 7.49 11.50 

10 μM Compound 14 0.95 65.70 8.55 11.40 
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D. Time-dependent analysis of cell cycle progression in Jurkat cells  

Given that our compounds, like most HDACi in clinical development 

today, showed preferential inhibition to hematological malignancies, we 

decided to conduct cell cycle analyses at multiple time points in both Jurkat 

and HuT-78 cells (5-7, 9, 10, 15, 16, 19-21, 25). We observed a distinct arrest 

of the sub-diploid phase (<G0/G1) of the cell cycle by 10 µM treatments of the 

tropolones over multiple time points (Table 3). As previously indicated, an 

increase in the subdiploid peak is often seen as an index for apoptosis; thus 

this observation will be further evaluated in subsequent chapters where we 

will explore the induction as well as mechanisms of apoptosis of tropolones in 

Jurkat cells. 

There was also a subtle arrest of the G1 phase of the cell cycle followed 

by correspondent decreases in both the S-phase and G2-M phase of the cell 

cycle following tropolone treatment at all three time-points. On the other hand, 

SAHA was able to induce an increase in the population of cells in the sub-

G0/G1, S and G2-M phases of the cell cycle at 12h (Figure 2) but at 24h and 

36h, the percentage of apoptotic cells (<G0/G1) was 48.90% and 60.80% 

respectively resulting in concurrent decreases in the population of cells in 

other phases of the cell cycle. Furthermore, our internal negative control, 

compound 11 with a methylated tropolone as the key moiety, essentially 

resembled the untreated control. This observation lends support to our 

hypothesis on the availability of the alpha-hydroxyl ketone on the tropolone 
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ring being essential for metal chelation at the HDAC active site. However, as 

previously stated in previous chapters, efforts are currently in place by the 

Anderson laboratory to further explore this hypothesis via structural studies of 

a tropolone bound to HDAC8.  

 

 

Table 3: Time-dependent analysis of the antiproliferative effects of tropolones on cell 
cycle progression as measured via FACS analysis in Jurkat cells after a 12h 
treatment. 

Treatment  12h 

%<G0/G1 %G1 %S %G2-M 

Control 4.16 65.0 19.5 10.0 

10 μM SAHA 20.4 25.9 31.6 19.7 

10 μM Compound 2 22.3 64.3 11.1 1.39 

10 μM Compound 7 16.3 71.5 10.2 1.25 

10 μM Compound 11 3.14 68.4 17.5 9.52 

10 μM Compound 13 13.3 67.4 15.2 2.67 
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Table 4: Time-dependent analysis of the antiproliferative effects of tropolones on 
cell cycle progression as measured via FACS analysis in Jurkat cells after a 24h 
treatment. 

 

Treatment  

24h 

%<G0/G1 %G1 %S %G2-M 

Control 2.39 60.90 20.90 14.30 

10 µM SAHA 48.90  7.46 19.90 12.30  

10 μM Compound 2 13.90 70.20 13.30 1.81  

10 μM Compound 7 13.90 66.50  15.80 2.58  

10 μM Compound 11 1.62 63.00 20.60 13.50 

10 μM Compound 13 13.00 69.40 14.20 2.32 

Table 5: Time-dependent analysis of the antiproliferative effects of tropolones 
on cell cycle progression as measured via FACS analysis in Jurkat cells after 
a 36h treatment. 

Treatment  36h 

%<G0/G1 %G1 %S %G2-M 

Control 1.80 59.10 23.00 14.20 

10 μM SAHA 60.80  6.90  15.60  14.90  

10 μM Compound 2 18.50 64.20 13.30 2.97 

10 μM Compound 7 13.40 65.90 14.60 4.35 

10 μM Compound 11 1.22 60.70 21.80 14.60 

10 μM Compound 13 17.70 64.70 13.10 3.21 
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Figure 2: Evaluation of the antiproliferative effects of tropolones on cell cycle 
proliferation after a 12h treatment in Jurkat cells. 

 
a. Control     b.    10 µM SAHA 

 

 

c. 10 µM Compound 2    d.     10 µM Compound 7 
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e. 10 µM Compound 11   f.  10 µM Compound 13 

     

 

Given our promising results  with 10 µM treatments, we also evaluated the 

antiproliferative effects of eight tropolones (Compounds 2, 5, 7, 9-11, 13 and 14) 

at a higher concentration of 25 µM after a 12h incubation period in Jurkat cells 

(Table 4). The tropolones were able to induce a subtle subdiploid phase arrest 

but activated a more pronounced increase in the population of cells in the S 

phase particularly when compared to the 10 µM treatment. However, it seems 

that a 10 µM concentration is sufficient to activate an increase in the subdiploid 

phase without excessive cell death which alters cell cycle profiles thus reducing 

data accuracy; Therefore, future assays on apoptosis and mechanisms of gene 

expression will utilize this 10 µM concentration.  
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Table 6: Elucidation of the antiproliferative effects of 25 µM tropolones on cell 
cycle progression as measured via FACS analysis after a 12h treatment in 
Jurkat cells. 

Treatment  12h 

%<G0/G1 %G1 %S %G2-M 

Control 3.78 64.20 17.50 13.20 

25 μM Compound 2 4.25 59.40 27.10 7.09 

25 μM Compound 5 5.20 60.90 27.60 4.94 

25 μM Compound 7 3.47 61.10 25.30 7.66 

25 μM Compound 9 3.93 60.10 27.90 6.22 

25 μM Compound 10 5.17 53.90 33.30 6.00 

25 μM Compound 11 3.34 63.10 18.70 13.00 

25 μM Compound 13 4.94 57.00 29.10 6.37 

10 μM Compound 14 4.06 58.50 27.60 7.27 

 

E. Elucidation of antiproliferative effects of tropolones on HuT-78 cells 

In a similar manner to Jurkat cells, 10 µM treatments of tropolones were 

used to evaluate antiproliferative effects on cell cycle progression in HuT-78 

cells. 5 µM SAHA served as experimental control to allow for more accurate 

observation of cell cycle profiles with reduced cell death. After a 12h 

treatment, there was no significant increase in the subdiploid population, G1 

or S phases by either SAHA or the tropolones. However, all the compounds 

were able to activate a G2-M arrest with the most significant effect being 

exhibited by compound 7. After a 24h treatment, there was a significant 
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increase in the subdiploid phase of the cell cycle and a subtle G1 arrest 

followed by a corresponding decrease in the S phase and G2-M phases for all 

the compounds except for compound 11 that basically resembled the 

untreated control. After 36h, the most significant observation that we saw for 

all the treatments was an increase in the subdiploid peak; thus prompting for 

future investigations into the induction and execution of apoptosis.  

Table 7: Time-dependent analysis of cell cycle progression in HuT-78 cells as 
measured via FACS analysis in HuT-78 cells after a 12h treatment. 

Treatment 

12h 

%<G0/G1 %G1 %S %G2-M 

Control 11.20 54.70 16.50 13.80 

5 μM SAHA 7.73 46.90 17.10 23.80 

10 μM Compound 2 4.78 56.30 15.10 22.40 

10 μM Compound 7 5.96 46.70 16.40 29.20 

10 μM Compound 11 7.12 51.70 17.70 21.90 

10 μM Compound 13 7.44 55.50 16.20 20.40 
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Table 8: Time-dependent analysis of cell cycle progression in HuT-78 cells as 
measured via FACS analysis in HuT-78 cells after a 24h treatment. 

Treatment  24h 

%<G0/G1 %G1 %S %G2-M 

Control 4.71 43.40 31.80 15.90 

5 μM SAHA 42.80 29.40 12.70 11.50 

10 μM Compound 2 19.10 41.60 22.40 14.70 

10 μM Compound 7 11.70 46.40 17.50 23.00 

10 μM Compound 11 5.33 49.70 25.50 14.90 

10 μM Compound 13 10.50 48.00 19.10 21.60 

Table 9: Time-dependent analysis of cell cycle progression in HuT-78 cells as 
measured via FACS analysis in HuT-78 cells after a 36h treatment. 

Treatment  36h 

%<G0/G1 %G1 %S %G2-M 

Control 8.98 41.60 24.50 22.70 

5 μM SAHA 43.20 34.30 14.00 6.24 

10 μM Compound 2 8.24 53.10 21.60 14.70 

10 μM Compound 7 16.70 40.40 21.80 18.00 

10 μM Compound 11 39.40 20.00 26.50 13.90 

10 μM Compound 13 18.00 42.70 20.00 17.00 
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F. Conclusions 

Cell cycle arrest is well established as a major mechanism of HDAC 

inhibition. Analyses of cell cycle distribution in multiple cell lines treated with 

tropolones indicate that the tropolones exert antiproliferative effects on cell 

cycle progression in a time-dependent manner particularly in the two 

hematological cell lines, Jurkat and HuT-78. An increase in the sub-diploid 

population of cells treated with tropolones, an index for apoptosis, was the 

most evident in Jurkat cells followed by the HuT-78 cells. These observations 

prompted further investigation on the induction and mechanisms of apoptosis 

that will be discussed in future chapters. The antiproliferative effects of 

tropolones on cell cycle progression in hematological cell lines seem to be 

time-dependent since more notable events were observed after longer 

incubation periods. On the other hand, a high concentration of 50 µM was 

required in order to induce significant changes in cell cycle distribution in 

HCT116 cells. 10µM concentrations of the tropolones did not result in 

significant cellular changes in HCT116 and BXPC3 cells lending support to 

earlier observations that we observed in the cytotoxicity assays. Finally, 

compound 11, typically exhibited changes in cell cycle distribution that were 

essentially the same as the untreated control thus lending support to our 

claim on the availability of the alpha-hydroxyl ketone being essential for metal 

chelation at the HDAC active site.  
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Chapter 7  

Investigation of specific gene expression 

A. Introduction 

Alterations of various cell signaling pathways can result in dysregulation of 

apoptosis and lead to cancer and neurodegenerative diseases (1-5). The p53 

tumor suppressor gene is a transcription factor that regulates the cell cycle and is 

the most widely mutated gene in human tumorigenesis (4-13). The critical role of 

p53 is evident by the fact that it is mutated in over 50% of all human cancers (4-

13).  In fact, the selective binding of HDACs may involve pathways where p53 

mediate repression of transcription (Figure 1; 6, 12, 13). For example, the levels 

of cell death by apoptosis that is induced by the fatty acid HDACi, sodium 

butyrate, is greatly reduced in the absence of p53 (6); whereas the 

hydroxamates, TSA and SAHA, can induce cell death by apoptosis in either a 

p53-dependent or a p53-independent manner (5-7, 9). Thus, it will be 

enlightening to evaluate if tropolone-mediated growth inhibition involves a p53-

dependent pathway. 

Cyclin-dependent kinases (CDKs) are a family of serine/threonine kinases 

that rely on associated cyclin proteins to execute the various steps of the cell 

cycle (1, 2, 14). CDK activity is regulated through posttranslational modifications 
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and subcellular translocations of specific CDK inhibitors (CDKIs), which are 

organized in two families, INK4 and Cip/Kip (1, 2).  

 

Figure 1: Schematic representation of the mechanism of action of HDAC 
inhibitors (HDI, HDACi; 6) 

 

The INK4 family (inhibitors of cyclin D-dependent kinases) consists of four 

members: p16INK4A, p15INK4B, p18INK4C and p19INK4D, and the Cip/Kip family 

(inhibitors of cyclin D-, cyclin E-, and cyclin A-dependent kinases) comprises 

p21Cip1 (also known as p21Waf1), p27Kip1 and p57Kip2 (1, 2). The overexpression of 
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CDKI such as p21CIP1/WAF1 through histone hyperacetylation is well demonstrated 

as one of the molecular mechanisms for anti-cancer effect of HDACi (6, 8, 11-

33). The natural product, hinokitiol (compound 10), has been reported to arrest 

the G1 phase of the cell cycle in malignant melanoma cells presumably as a 

result of p27 activation (34). Furthermore, p15 and other INK4 proteins are 

implicated in early to mid-stage G1 whereas p21 and p27 act broadly on all 

stages of the cell cycle (2).  Therefore, we will explore the ability of tropolones to 

suppress tumor growth via specific gene expression of p15INK4B, p21CIP1/WAF1 and 

p27KIP1in Jurkat and HuT-78 cells, the two cell lines that are the most sensitive to 

tropolone-mediated growth inhibition.  Results garnered from evaluation of 

specific gene expression will lend support to cell cycle analysis data (Chapter 6) 

and further illuminate the mechanisms of action of tropolones as HDACi.  

We evaluated specific gene expression via FACS analysis by sequentially 

incubating treated cells with primary antibodies for p53, p21, or p27 followed by 

treatment with secondary antibodies conjugated with a fluorescein isothiocyanate 

(34-38). We determined values for geometric mean fluorescence intensities 

(GMFI), equivalent to the median cell population response, for each cell 

treatment with the aid of the FlowJo Workstation (36-38).  Assays were 

performed at multiple time points and/or multiple concentrations when possible. 

We compared our data with published reports for specific gene expression for the 

experimental control, SAHA, when possible (6, 15, 20, 21, 33). Detailed 

experimental methods are in Section I of the Materials and Methods chapter.  
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With the exception of the 24h time-point for the Jurkat cells, corresponding 

histograms for evaluation of specific gene expression are in sections 23-36 of the 

Appendix.  

B. Elucidation of p53 expression in Jurkat cells 

The tumor suppressor p53 belongs to a family of structurally and 

functionally related transcription factors, including p73 and p63 (10). Diverse 

cellular stresses, genotoxic stresses, and many anticancer agents can activate 

p53 activity that consequently stimulates the transcription of many genes that are 

involved in cell cycle regulation and apoptosis (2, 10). The mechanisms of action 

of many HDACi may either be p53-dependent or p53-independent (6, 12).  

Hence, we evaluated activation of p53 in Jurkat cells after a 12h treatment with 

10 µM HDACi via flow cytometric analysis (Table 1). We observed that the values 

for geometric mean fluorescence intensities (GMFI) for the tropolones and SAHA 

were within the same threshold of the untreated control. Given that there was no 

significant overexpression of p53 protein levels following treatment, our results 

suggest that tropolones may mediate growth inhibition in Jurkat cells in a p53-

independent manner. However, further investigation at multiple time points and in 

multiple cell lines may be needed to validate our data since HDACi have been 

reported to act uniquely in different cell lines (6, 7, 11, 12, 15, 23-25, 27-30).  
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C. Comparative analysis of p15 expression in Jurkat and HuT-78 cells 

The INK4 family of CDKIs consists of four members, p16INK4A, p15INK4B, 

p18INK4C and p19INK4D (2); these CDKI are targeted specifically to the CDK4 and 

CDK6 complexes and as a result are active in the early and mid-G1 phase of 

the cell cycle (2). Based on our cell cycle analyses data (Chapter 6), we 

investigated the activation of p15INK4b   primary antibodies in Jurkat and HuT-78 

cells following a 24h treatment with 10 µM and 50 µM tropolones 

correspondingly via FACS analysis (Table 2). 10 µM SAHA served as 

experimental control and we did not evaluate 50 µM SAHA due to excessive cell 

death. We observed that activation of p15 antibodies were within the same 

range for the tropolones and the untreated control for both the 10 µM and 50 µM 

treatments in Jurkat cells. For example, 10 µM and 50 µM treatments of 

compound 2 resulted in GMFI values of 2.27 and 2.38 respectively whereas the 

untreated control had a GMFI value of 2.21. Concurrently, SAHA treatment 

Table 1: Elucidation of p53 expression in Jurkat cells after a 12h treatment with 10 µM HDACi 

 

Treatment 

(p53, 12h) 

GMFI in HuT-78 cells 

Control SAHA 2 5 7 9 10 11 13 14 

4.22 3.92 4.39 4.34 3.34 3.37 3.48 5.13 3.65 3.92 
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resulted in a slightly higher increase in p15 activation in Jurkat cells 

(GMFI=3.43).  

We also observed similar trends in HuT-78 cells; SAHA treatment resulted 

in a slightly higher increase in p15 activation (GMFI of 28.00 vs. 17.00 in the 

untreated control). Compound 12 was the only tropolone that showed a notable 

increase in p15 activation at a higher concentration resulting in more than two-

fold increase in p15 activation at 50 µM when compared to the 10 µM treatment 

that was essentially the same as the untreated control (GMFI = 17.90). These 

results suggest that activation of p15INK4B may not be a mechanism for 

tropolone-mediated growth inhibition for Jurkat and HuT-78 cells but it is 

possible that other INK4 proteins may be implicated by the tropolones.  
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Table 2: Comparative analysis of p15 activation in Jurkat and HuT-78 cells. Note: N.D. = Not 
determined. 

 
 
Treatment  

Jurkat   HuT-78  

p15
INK4B

, GMFI (24h) 

10 µM  50 µM   10 µM  50 µM  

   Control  2.21  17.00 

    SAHA  3.43  N.D.   28.00  N.D.  

   Compound 2  2.27  2.38   19.40  18.20 

Compound 3 2.25 2.82  17.50 19.40 

Compound 5 2.65 N.D.  15.30 N.D. 

    Compound 7  2.28  2.68   17.30  20.60  

Compound 9 2.65 N.D.  17.30 N.D. 

Compound 10 1.90 2.62  17.70 18.60 

Compound 11 2.23 2.35  15.60 17.10 

Compound 12 2.51 2.46  17.90 38.10 

Compound 13 2.34 2.43  14.70 17.10 

Compound 14 2.39 2.35  14.30 18.00 

 

D. Elucidation of p27 activation in Jurkat and HuT-78 cells 

  The three broad-spectrum CDKI, p21CIP1/WAF1, p27KIP1 and p57KIP2 are 

known to act at all stages of the cell cycle and inhibit all of the cyclin-CDK 

complexes that form at later stages of the cell cycle (2). While relatively little is 

known about p57, p21 and p27 function similarly but p27 expression is unique in 
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its own way and has been shown to be implicated in HDAC inhibition (20, 34, 

40); moreover, p27 is reported to be available in high concentrations in the G0 

quiescent stage (2). Given these observations and our cell cycle analyses data, 

we conducted an initial assessment of p27 activation in HuT-78 cells after a 12h 

treatment with 10 µM HDACi via FACS analysis. 

  With the exception of compounds 2 and 8, the HDACi activated p27 levels 

within the same threshold as the untreated control; compound 2 had a notably 

lower GMFI (8.25 vs. 24.40 in the untreated control) whereas compound 9 had 

the highest GMFI of all the compounds (31.80). These results suggest that p27 

activation may not be implicated in tropolone-mediated cell cycle arrest after a 

12h treatment with 10 µM in HuT-78 cells.  

 

Alternatively, we evaluated p27 activation in Jurkat cells after 12h and 24h 

treatments with the tropolones in Jurkat cells (Table 4).  10 µM treatments of 

SAHA, compound 2 and compound 7 did not exert any overexpression of p27 

Table 3: Initial assessment of p27 activation in HuT-78 cells after a 12h treatment with 10 µM HDACi 

 

Treatment 

(p27, 12h) 

GMFI in HuT-78 cells 

Control SAHA 2 5 7 9 10 11 13 14 

24.40 20.30 8.25 20.60 20.20 31.80 20.10 25.00 22.90 20.80 
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when compared to the untreated control after a 12h treatment. However, after a 

24h treatment period, 10 µM treatments of SAHA, compound 2 and compound 7 

resulted in slightly higher expression levels of p27 but still resulting in less than 

a two-fold difference when compared to the untreated control.  

 

Table 4: Time-dependent analysis of p27 activation in Jurkat cells treated with 
HDACi. Note:  ND=Not determined. 

 
 
Treatment   

Jurkat 

p27
KiP1

, GMFI 

12h 24h 

Control  10.10 7.76 

10 µM SAHA 5.57  8.64  

10 µM Compound 2  6.14  9.18  

50 µM Compound 2 ND 12.10 

10 µM Compound 7  8.87  9.47  

50 µM Compound 7 ND 8.58 

 

Interestingly, treatment with 50 µM of compound 2 resulted in the most 

significant overexpression of all treatments (12.10 vs. 7.76 in the untreated 

control) whereas 50 µM of compound 7 actually resulted in a lower activation of 

p27 when compared to the corresponding 10 µM  treatment (8.58 vs. 9.47). This 

observation may be due to the fact that compound 7 is more cytotoxic in Jurkat 

cells than compound 2 (GI50 of 0.67 µM vs. 3.33 µM) thus the 50 µM treatment 
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with compound 7 may have resulted in more cell death leading to a lower 

number of intact cells to respond to the p27 treatment.  

Given that there was no significant overexpresssion of p27 at either 12h or 

24h treatment periods or with either 10 µM or 50 µM treatments of the 

tropolones, it may be deduced that p27 may not be implicated in tropolone-

mediated growth inhibition and cell cycle arrest in Jurkat and HuT-78 cells. 

However, studies in human malignant melanoma cells have shown that 80 µM of 

the natural product, hinokitiol (compound 10), activated p27 expression after a 

24h treatment (34). Therefore, it is possible that a higher concentration of the 

tropolones may result in increased p27 expression in Jurkat and HuT-78 cells; 

but given the high potency of the tropolones in both cell lines, a higer 

concentration may also result in excessive cell death that will result in a 

decreased amount of intact cells that respond to antibody treatments. 

E. Investigation of p21 overexpression in Jurkat and HuT-78 cells  

The p21 gene is a repressor complex, tightly controlled by the tumor 

suppressor protein p53, which inhibits cell cycle progression by blocking CDK 

activity and arresting the cell cycle in G1 phase (2, 4-6, 8, 11-13, 29). 

Expression profiling studies have shown that treatment of HDACi alters the 

expression of approximately 2% to 10% of cellular genes including the up-

regulation of histones, tubulins, and the CDKI, p21CIP1/WAF1 (6, 8, 11-13, 15, 21, 

23, 28-30, 41-43). In fact, p21 is one of the most commonly induced genes by 
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HDACi and HDACi-mediated expression of p21 is correlated with an increase in 

the acetylation of histones associated with the p21 promoter region (15, 20, 28). 

For example, the p21 gene promoter has been shown to be a direct target for 

SAHA in ARP-1 human multiple myeloma cells but SAHA treatment did not 

concurrently alter p27 expression levels once again indicating that both pan-

CDKI have unique functions within cells (15, 20, 28). Therefore, we conducted 

comprehensive analyses of p21 overexpression in Jurkat and HuT-78 cells via 

FACS studies.   

Our initial assessment of p21 activation in Jurkat cells was conducted after 

a 12h treatment with 10 µM HDACi (Table 5). We found that SAHA and the 

tropolones exerted p21 expression within the same threshold as the untreated 

control. For example, the natural product (compound 10) exerted the most 

significant expression among all HDACi (GMFI = 5.30 vs. 4.62 in the untreated 

control and 5.18 in SAHA). The results of the preliminary assessment warranted 

further investigation of p21 activation by the tropolones in Jurkat cells.  

 

Table 5:  Initial assessment of p21 activation in Jurkat cells after a 12h treatment with 10 µM HDACi 

 

Treatment 

(p21, 12h) 

GMFI in Jurkat cells 

Control SAHA 2 5 7 9 10 11 13 14 

4.62 5.18 4.75 4.06 4.91 4.09 5.30 2.47 4.72 3.03 
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Based on our initial 12h assessment, we hypothesized that a longer 

treatment period and/or a higher concentration of the tropolones may be 

required in order to induce notable effects in p21 expression in the two 

hematological cell lines. Therefore, we conducted an investigation of p21 

overexpression at after a 24h treatment with 10 µM and 50 µM concentrations of 

the tropolones in Jurkat and HuT-78 cell lines (Table 6; Figure 2). After a 24h 

period, SAHA treatment resulted in a three-fold increase in expression levels of 

p21 whereas the tropolones were either slightly higher or lower than the 

untreated controls at both 10 µM and 50 µM treatments in Jurkat cells. Once 

again, compound 10 exerted the most significant effect (2.52 vs. 1.35 in the 

untreated control) at a 10 µM concentration whereas compound 2 exerted the 

most significant effect (2.53 vs. 1.57 in the untreated control) at a 50 µM 

concentration in Jurkat cells.  

On the other hand, SAHA treatment resulted in more than a two-fold 

increase in p21 expression levels whereas the tropolones were around the 

same range as the untreated control in HuT-78 cells. For example, compound 

13 induced the most significant effect (32.30 vs. 21.80 in the untreated control) 

at a 10 µM concentration whereas compound 2 induced the most significant 

effect (2.53 vs.1.57 in the untreated control) at a 50 µM concentration in Jurkat 

cells. 
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Table 6: Comparative analysis of p21 activation in Jurkat and HuT-78 cells. Note: ND = Not 
determined.  

Treatment  Jurkat  HuT-78  

p21
Cip1/WAF1

 , GMFI  (24h) 

10 µM 50 µM 10 µM 50 µM 

Control  1.35  1.57  21.8 

SAHA  4.03  ND  53.20 ND 

 Compound  2  2.26 2.53  21.50 39.50 

Compound  3 2.42 2.42 ND 34.30 

Compound 5 2.41 ND 26.70 ND 

Compound  7  1.67  1.87  21.80 26.20 

Compound  9 1.44 ND 23.90 ND 

Compound  10 2.52 2.03 21.70 29.10 

Compound  11 1.16 1.52 22.40 20.40 

Compound  12 ND 1.84 ND 26.70 

Compound  13 2.01 1.85 32.30 29.60 

Compound  14 1.39 1.86 23.20 23.90 
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Figure 2: Evaluation of p21 expression in Jurkat cells after a 24h treatment with 
10 µM HDACi. Note: Untreated control for pertinent HDACi treatments 
represented in red and HDACi represented in blue on the corresponding 
histograms. 

 

a) SAHA        b) Compound 2 

  
 
 
 
 
c) Compound 5      d) Compound 7 
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e) Compound 9      f) Compound 10 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
g) Compound 11     h) Compound 13 
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i) Compound 14 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F. Comparative analysis of gene expression via qRT-PCR analysis in 

Jurkat cells 

We followed up our FACS studies on p21 expression in Jurkat cells with 

quantitative real-time polymerase chain reaction (qRT-PCR). Reverse-

transcription polymerase chain reaction (RT-PCR) assays are considered the 

most common method for characterizing and confirming gene expression 

patterns, and also for comparing the levels of mRNA in different sample 

populations (44).  Quantitative real-time PCR is often used to further validate RT-

PCR protocols through the use of a standardized primer and internal competitor 

template sets for each target gene (44). Therefore, following a 24h treatment with 

10 µM concentrations of both SAHA and compound 2 in Jurkat cells, we 

conducted RT-PCR and qRT-PCR using methods that are detailed in Section J 
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of the Materials and Methods chapter (45-47).  Assay was performed in triplicate 

and we compared our p21 data to published reports for our experimental control, 

SAHA (33). Standard deviation values are reported in the Appendix, section 36.  

We evaluated the relative gene expression levels of HDAC2, p21 and the 

vitamin D receptor (VDR). Clinical studies have shown a correlation between low 

levels of vitamin D in patients with lymphomas and increased mortality thus 

prompting our interest in evaluating tropolone-mediated VDR expression (48). 

Our results are highlighted in table 7 and in Figure 2.  

 

 

 

 

 

Table 7: Elucidation of relative expression of specific genes after a 24h treatment with 10 
µM HDACi in Jurkat cells 

Treatment 
 

Relative Gene Expression  

HDAC2 p21 VDR 

Control 1.00 1.00 1.00 

Compound 2  0.86  0.95  0.58  

SAHA 1.10  328.23  82.54  
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Figure 3: Elucidation of relative expression of specific genes after a 24h 
treatment of compound 2 in Jurkat cells 

 

 

 

 

 

 

 

 

Similar to our flow cytometric data, we found that compound 2 induced 

gene expression levels of p21 around the same threshold as the untreated 

control. Even though HDAC2 expression was also around the same range as the 

untreated control, there was down-regulation of VDR gene expression levels by 

compound 2. Alternatively, SAHA significantly overexpressed p21 and VDR gene 

levels but HDAC2 levels were about the same when compared to either 

compound 2 or the untreated control. Our data suggests that p21 activation may 

not be a mechanism for tropolone-mediated growth inhibition; furthermore, 

overexpression of VDR and HDAC2 may not be involved in the mechanisms of 

action of tropolones. It may be plausible that the inability of the tropolones to 
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inhibit HDAC1 may hinder p21 activation since it has been reported that SAHA 

treatment in multiple myeloma cells resulted in a marked decrease in HDAC1 

expression and a significant overexpression of p21 (20, 21, 28). Moreover, gene 

knockdown studies in human malignant melanoma cells have shown that p21 is 

not required for the induction of cell cycle arrest by hinokitiol, compound 10 (34). 

Furthermore, our preliminary assessment of gene expression highly suggests 

that there is a distinct need for comprehensive gene studies via microarray 

analysis in normal and mutant Jurkat and/or HuT-78 cells or even in animal 

models in order to more distinctly appraise genes that are altered as a result of 

tropolone treatment (49). Based on our enzyme inhibition data (Chapter 3), 

mutant hematological cells may either be deficient of or overexpressed with 

HDAC2 or HDAC8 thus serving as further proof of concept for our claim on the 

isoform-selective nature of HDAC inhibition by the tropolones.  

G. Conclusions 

Elucidation of specific gene expression is critical in understanding the 

molecular mechanisms of tropolones as HDACi. Selective binding of HDACs may 

involve pathways where p53 mediate repression of transcription. Furthermore, 

overexpression of CDKIs such as p21CIP1/WAF1 is well demonstrated as one of the 

molecular mechanisms for anti-cancer effects of HDACi. Our results indicate that 

tropolone-mediated growth inhibition may involve a p53-independent pathway in 

Jurkat cells. Furthermore, preliminary evaluation of the overexpression of CDKIs 
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that play active roles at early to mid-stage G1 (p15INK4B), as well as broad-

spectrum CDKIs (p21CIP1/WAF1 and p27KIP1) did not reveal any significant 

activation of these proteins at the assayed concentrations and timepoints in 

Jurkat and HuT-78 cells. However, compound 13 at a 50 µM concentration was 

able to activate a two-fold increase of p15 after a 24h treatment in HuT-78 cells. 

qRT-PCR analysis of p21 expression in Jurkat cells was also used to validate our 

flow cytometric data. Based on published studies, we hypothesize that the 

inability of the tropolones to overexpress p21 in may be due to lack of HDAC1 

inhibition.  These preliminary assessments highly suggest that there is a need for 

a more comprehensive analysis of tropolone-mediated gene expression in  

normal and mutant Jurkat or HuT-78 cells via microarray analysis in order to 

more precisely determine altered genes.  
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Chapter 8  

Investigation of the induction and mechanisms of cell death by apoptosis 

 

A. Introduction 

The process of apoptosis, otherwise known as programmed cell death, is 

an important component of several physiological processes including normal cell 

turnover that involves the genetically determined elimination of cells (1-3). 

Defects in the regulation of apoptosis are implicated in many diseases including 

neurodegenerative diseases, ischemic damage, autoimmune disorders and 

many types of cancer (2, 3). In the last decade, significant attention has been 

focused on the exploitation of apoptosis as a novel and promising strategy for 

cancer chemoprevention and chemotherapy (1-3).  Structurally diverse HDAC 

inhibitors have been shown to induce apoptosis in several human malignant cells 

(4-60). The natural product, hinokitiol (compound 10), has also been shown to 

induce apoptosis in human prostate cancer cells (61). The induction of apoptosis 

is distinguished by specific morphological and biochemical events, including 

exposure of phosphatidylserine (PS) on the outer leaflet of the plasma 

membrane as well as the activation of cysteine aspartic acid-specific protease 

(caspases) (1-7, 62-65). 

 There are two major mechanisms of apoptosis that are highly complex 

and involve an energy-dependent cascade of molecular events (2, 3, 9-12). 
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These two pathways are the extrinsic or death receptor pathway and the 

intrinsic or mitochondrial pathway; both pathways are linked and influence each 

other (Figure 1). Recent evidence shows that there is an additional pathway that 

involves T-cell mediated cytotoxicity and perforin-granzyme dependent killing of 

the cell (2, 3). The extrinsic, intrinsic, and granzyme B pathways converge on 

the same terminal, or execution pathway that is initiated by the cleavage of 

caspase-3 resulting in significant apoptotic events such as DNA fragmentation 

(2).  

 

Figure 1: Schematic representation of apoptotic events (2) 

 

 

HDAC inhibition has been shown to upregulate the intrinsic apoptosis 

pathway via both the upregulation of proapoptotic proteins and downregulation 
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of anti-apoptotic proteins in the B-cell lymphoma 2 (Bcl-2) family (9-14, 16, 22, 

24, 26- 28, 37, 40, 43, 49, 54, 57- 59). HDAC inhibition also induces elements of 

the extrinsic apoptotic pathway by increasing expression of death receptors, 

including Fas, tumor necrosis factor-α (TNF-α), and TNF-related apoptosis-

inducing ligand (TRAIL) receptors (9, 14, 15, 17, 19, 22- 24, 26, 27, 49, 54, 57, 

58). In fact, it has been reported that treatments with vorinostat results in 

upregulation of caspase-7 and caspase-9, key players in the intrinsic pathway of 

apoptosis, and downregulation of caspase-8, a key player in the extrinsic 

pathway (14, 37). Therefore, the purpose of this chapter is to investigate the 

ability of the tropolones to induce apoptosis and to explore the mechanisms of 

execution of apoptosis by the tropolones.  

B. Elucidation of the induction of cell death by apoptosis 

It is well established that cells lose their membrane phospholipids in the 

early stages of apoptosis and expose phosphatidylserine (PS) on the outer leaflet 

of the plasma membrane (2, 3, 5, 63-65). Conversely, an alternative to cell death 

by apoptosis is necrosis, which is a toxic process where cells passively follow an 

energy-independent mode of death resulting in interference with the energy 

supply of the cell as well as direct damage to cell membranes (1). Annexin V is a 

calcium-dependent phospholipid-binding protein with a high affinity for PS that is 

often used in conjugation with a fluorescein isothiocynanate (FITC) to label PS 

externalization (2, 60, 63-65).  Given that AnnexinV complexed with FITC can 
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also label premature cell death by necrosis following the loss of membrane 

integrity, the simultaneous addition of propidium iodide that does not permeate 

cells with intact plasma cells allows for discrimination between intact cells and 

early apoptotic cells (60, 63, 65).  

Based on cell line selective cytotoxicity data, the induction of cell death by 

apoptosis was evaluated by analyzing membrane phosphatidyl-serine (PS) 

exposure via flow cytometric analyses in Jurkat and HuT-78 cells because they 

were the two cell lines that are the most sensitive to inhibition by tropolones. 

Treated cells were analyzed for apoptosis with the aid of Annexin V and 

propidium iodide via flow cytometric analysis. Assays were performed at multiple 

time points and/or multiple concentrations when possible. We compared our 

results to published data on the induction of apoptosis by our experimental 

control, SAHA, lines when possible (59). Detailed methods for flow cytometric 

analysis are described in Section K of the Materials and Methods chapter. With 

the exception of the 24h time-point for the Jurkat cells, corresponding histograms 

for evaluation of specific gene expression are in sections 37 and 38 of the 

Appendix. With the aid of the FlowJo Workstation (Treestar Inc., USA), cells were 

identified as early apoptotic cells if they were Annexin V positive and PI negative; 

late apoptotic or necrotic cells  were both Annexin V positive and PI positive 

whereas surviving cells were Annexin V negative and PI negative (5, 60, 63-65).  

 



www.manaraa.com

164 

 

C. Initial assessment of the induction of apoptosis in Jurkat cells 

Given our observations that an increase in the sub-diploid population of 

cells treated with tropolones, an index for apoptosis, was the most evident in 

Jurkat cells followed by the HuT-78 cells, our initial assessment of the induction 

of apoptosis was conducted in Jurkat cells.  After a 20h treatment, 48.3% of 

SAHA-treated cells were undergoing early apoptosis compared to 25.6% in the 

untreated control. Both the alpha-substituted and the beta-substituted 

tropolones were able to induce an equivalent proportion of apoptosis in Jurkat 

cells (Table 1; Figure 2). For example, compound 2 and compound 7 with a 

phenyl at the alpha and beta positions respectively, induced early apoptosis in 

34.6% and 35.8% of the Jurkat cells correspondingly. Similarly, compound 2 

and compound 7 induced equivalent percentages of late stage 

apoptotic/necrotic cells (12.7% and 14.0% respectively).  
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Table 1: Analysis of the induction of apoptosis in Jurkat cells after a 20h treatment with 10 
µM HDACi 

Treatment  % Intact cells % Early Apoptotic 
cells 

% Late 
Apoptotic/Necrotic 

cells 

Control  63.4 25.6 11.0 

SAHA  36.8 48.3 14.8 

Compound 2  52.6 34.6 12.7 

Compound 5 48.1 36.8 15.0 

Compound 7  50.0 35.8 14.0 

Compound 9 56.7 30.6 12.6 

Compound 10 49.9 35.0 15.0 

Compound 11 52.5 31.4 15.9 

Compound 13 48.4 35.8 14.1 
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Figure 2: Analysis of the induction of apoptosis in Jurkat cells after a 20h 
incubation: y axis represents PI response whereas x axis represents Annexin V 
(AV) response. Quadrant 1 (bottom left) represents intact (live) cells (AV-, PI-); 
Quadrant 2 (bottom right) represents early apoptotic cells (AV+, PI-); Quadrant 3 
(top right) represents late apoptotic/necrotic cells ((AV+, PI+).  

 
 
 
a)  Control       b)  SAHA 
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c) Compound 2                                                     d)  Compound 5 

 

 

e)  Compound 7      f)  Compound 9 
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g)  Compound 10     h)  Compound 11 

 

 
 
 
 

i)  Compound 13 
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D. Time-dependent analysis of the induction of apoptosis in Jurkat cells 

Following our 20h assessment of the induction of apoptosis in Jurkat cells, 

we evaluated multiple time-points to more accurately elucidate the ability of 

tropolones to induce apoptosis in a time-dependent manner. Based on cell line 

cytotoxicity and the 20h data on the induction of apoptosis, we chose compound 

2 for comparative analysis (Table 2; Figure 3). Induction of early-stage apoptosis 

by both compound 2 and SAHA peaked at 24h even though SAHA activated a 

higher percentage of cells in early stage apoptosis than compound 2 (36.20%  

vs. 11.70%). However, after a  48h incubation, there were a significantly higher 

number of necrotic cells in the SAHA-treated cells (25.30%) than for those 

treated with compound 2 (3.51%).  

 
Table 2: Elucidation of the induction of apoptosis in Jurkat cells after a 20h treatment with 10 µM HDACi 

Treatment  
 

6h  12h 24h  48h  

% 
Apoptotic  

%  
Necrotic  

%  
Apoptotic  

% 
Necrotic  

%  
Apoptotic  

% 
Necrotic  

%  
Apoptotic  

% 
Necrotic  

Control  6.91 9.57  16.6 7.61 8.02  5.37  3.17  1.66  

SAHA  4.35  9.29  22.50 8.49 36.20  1.94  4.63  25.3  

 2  5.00  8.21  11.50 8.32 11.70 2.07  9.63  3.51  

 
 

This observation may be attributed to an accumulation of hyperacetylated 

histones that trigger different genes involved in the regulation of apoptosis and 

tumor growth in SAHA-treated cells when compared to compound 2 suggesting 

that the mechanisms of apoptosis by these two compounds may be executed by 
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different pathways (14, 22, 24, 26, 27, 44, 49, 54-58).  Therefore, we will discuss 

the mechanisms of apoptosis by SAHA and the tropolones subsequently.   

 

Figure 3: Time-dependent analysis of the induction of apoptosis in Jurkat cells 
treated with 10 µM HDACi. Histograms indicate: a) % apoptotic cells;  b) % 
necrotic cells 

 
a) 
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E. Elucidation of the induction of apoptosis in HuT-78 cells 

Given that HuT-78 cells were also sensitive to tropolone-mediated growth 

inhibition, we evaluated the induction of apoptosis at two time-points, 12h and 

20h. At the 12h time-point, there was very little apoptotic activity since the 

majority of the cells were still intact (Table 3). However, this observation is not 

surprising since an evaluation of a panel of cutaneous T-cell lymphoma (CTCL) 

cell lines showed that HuT-78 cells were the least sensitive to induction by 

apoptosis by HDACi including SAHA (14).  

 

 

 

 

However, after a 20h incubation, SAHA was able to activate more than a 

2-fold increase in the percentage of early apoptotic cells (16.5%) when 

compared to either the untreated control (6.12%) or compound 2 (7.96%). The 

Table 3: Time-dependent analysis of the induction of apoptosis in HuT-78 cells treated 
with 10 µM HDACi 

Treatment 
% Intact cells % Early Apoptotic Cells 

12h 20h 12h 20h 

Control  96.10 91.30 3.46 6.12 

SAHA  93.80 73.70 5.71 16.50 

Compound 2  96.00 89.30 3.36 7.96 

Compound 7 94.70 90.60 5.06 6.60 

Compound 10 92.60 88.70 7.11 8.22 

Compound 11 95.70 91.10 3.95 5.90 
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natural product, compound 10, induced the highest percentage of early 

apoptotic cells (8.22) among all tropolones; whereas the methylated tropolone, 

compound 11, resembled the untreated control thus lending support to our 

hypothesis about the availability of the alpha-hydroxyl ketone being essential for 

tropolone-mediated activity. 

F. Investigation of the mechanisms of activation of the extrinsic apoptotic 

pathway in Jurkat cells 

The extrinsic apoptotic pathway, also known as the receptor-activated 

apoptotic pathway and the death receptor pathway, is triggered by external 

cellular events and involves the activation of pro-apoptotic cell surface receptors 

(2, 3). The extrinsic apoptotic pathway functions through binding of death 

receptors such as Fas, TNF, or TRAIL to their corresponding ligands (2, 3, 9, 14). 

Activation of caspases often indicates an irreversible commitment towards cell 

death (2). There are ten major caspases (2, 66, 67) categorized into initiators 

(caspase-2, -8, -9, -10), effectors or executioners (caspase-3, -6, -7), and 

inflammatory caspases (caspase-1, -4, -5).  In fact, interactions between death 

receptors and their corresponding ligands results in the release of caspase-8 and 

caspase-10, which in turn results in the activation of effector caspases (Figure 1; 

2, 14, 66, 67). Moreover, HDACi such as SAHA alone and/or in combination with 

other anticancer agents have been shown to induce apoptosis in a caspase-8 

dependent manner in several malignant cells (11, 12, 14, 16, 17, 37 58).  



www.manaraa.com

173 

 

Therefore, we monitored the activation of caspase-8 by tropolones and SAHA 

after a 24h incubation in Jurkat cells with the aid of a fluorescent inhibitor of 

caspases (FLICA) reagent via flow cytometic analysis (66). Detailed experimental 

methods are in Section L of the Materials and Methods chapter.  

We observed that SAHA activated over a 100-fold increase in caspase-8 

activation in Jurkat cells when compared to either the untreated control or the 

tropolones (Table 4; Figure 5). Our data strengthens our earlier hypothesis that 

the mechanisms of apoptosis may involve different pathways since SAHA 

activated caspase-8 levels significantly higher than the untreated control whereas 

the tropolones, compound 2 and compound 7, activated caspase-8 at the same 

levels as the untreated control. This observation indicates that tropolones induce 

apoptosis in a caspase-8 independent manner, suggesting that the extrinsic 

apoptotic pathway may not be involved in the initiation of apoptosis by 

tropolones.  
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Figure 5: Evaluation of Caspase 8 activation in Jurkat cells after a 24h 
treatment with 10 µM HDACi: y axis represents PI response whereas x axis 
represents caspase-8-carboxyfluorescein (FAM) response. Quadrant 1 (bottom 
left) represents intact (live) cells (FAM-, PI-); Quadrant 2 (bottom right) 
represents caspases-8 responsive cells (FAM+, PI-). 

 
 
a) Control        b) SAHA  
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 4: Elucidation of Caspase 8 activation in Jurkat cells after a 24h treatment 
with 10 µM HDACi 

Treatment  % Intact cells  % Caspase-8 responsive cells  

Control  99.30  0.32  

SAHA  62.60  35.90  

Compound 2  98.90  0.43  

Compound 7  99.40  0.40  
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c)  Compound 2      d) Compound 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

G. Investigation of the mechanisms of execution of the intrinsic apoptotic 

pathway in Jurkat cells 

 
The intrinsic apoptotic pathway, also known as the stress-activated and 

the mitochondrial apoptotic pathway, is triggered by a diverse array of non-

receptor-mediated stimuli that give rise to intracellular signals that act directly on 

targets within the cell (2, 3, 9, 14). The intrinsic apoptotic pathway, which is 

regulated by pro- and antiapoptotic proteins of the Bcl-family, are mitochondrial-

initiated events that release proteins such as cytochrome c resulting in the 

activation of caspases (2, 3, 9, 14, 58, 62). Both the extrinsic and intrinsic 

pathways converge at the final pathway of apoptosis (2, 11, 12, 14, 58, 62, 66-

68), the execution phase, as a result of activation of the execution caspases 

(caspase-3, -6, -7). Execution caspases activate cytoplasmic endonucleases 
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that degrade nuclear material as well as proteases that degrade the nuclear and 

cytoskeletal proteins (2, 3, 58, 62, 66-68).   

Caspase-3, also known as CPP-32, Yama or Apopain, is an intracellular 

cysteine protease that exists as a proenzyme, becoming activated during the 

cascade of events associated with apoptosis (16, 25). Caspase-3 is considered 

to be the most important of the executioner caspases (2, 11, 12, 62, 66-68) and 

is activated by the other initiator caspases (caspase-8, -9, -10). Furthermore, 

direct activation of caspase-3 is critical for granzyme B-induced killing in the 

third apoptotic pathway, the perforin/granzyme pathway (2).  

Based on the essential nature of caspase-3 in the execution of apoptosis, 

we conducted an investigation of caspase-3/7 activation in Jurkat cells. Our 

initial assessment of caspase-3/7 activation was conducted in Jurkat cells after a 

12h treatment using a 96-well luminescent assay that correlates luminescence 

with caspase-3 activity (68-70).  Detailed experimental methods are highlighted 

in Section M of the Materials and Methods chapter. Standard deviation values 

for all treatments are reported in the Appendix, Section 39.  

After a 12h treatment, SAHA activated more than a 2-fold increase in 

caspase-3/7 activity when compared to the untreated control (Table 5; Figure 6). 

The tropolones were also able to activate an increase in caspase activity when 

compared to the untreated control albeit lower than SAHA-treated cells.  
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Table 5: Activation of caspase-3/7 after a 12h treatment with 10 µM HDACi 

Treatment 
Caspase 3/7 Activity (Mean RLU) 
*RLU= relative luminescent units 

Control 69,935 

SAHA 157,988 

Compound 2 97,513 

Compound 7 110,650 

 

 

 

Figure 6: Evaluation of Caspase-3/7 activation after a 12h treatment with 10 µM 
HDACi 
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H. Time-dependent analysis of Caspase-3 activation in Jurkat cells 

Given the promising data garnered from the 12h analysis, we conducted a 

comprehensive, time-point analyses of caspase-3 activation in Jurkat cells 

(Table 6; Figure 7). After a 6h treatment, compound 2 and compound 7 

activated a higher proportion of caspase-3 activity than either the untreated 

control or SAHA. Caspase-3 activity dropped after 24h and increased again 

after a 48h treatment by the tropolones but at both time-points, tropolone-

mediated caspase-3 activity was lower than the untreated control. On the other 

hand, caspase-3 activity increased in SAHA-treated cells after 24h and dropped 

after 48h but SAHA-mediated caspase-3 activity was lower than the untreated 

control for both time-points. However, our comprehensive analysis (Figure 7d) 

highly suggests that caspase-3/7 activation by both the tropolones and SAHA 

peak at 12h indicating that caspase-3 activation may be one of the mechanisms 

for the execution of apoptosis in Jurkat cells by both the tropolones and SAHA.   
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Table 6: Time-dependent analysis of caspases-3/7 activation in Jurkat cells 

Treatment 

Caspase-3/7 Activity (Mean RLU) 

6h 24h 48h 

Control 59,417 136,627 109,510 

SAHA 53,518 125,484 95,463 

Compound 2 88,661 76,948 105,357 

Compound 7 73,949 80,438 71,048 

 

 

Figure 7: Time-dependent analysis of Caspase-3 activation in Jurkat cells 

 

a) Activation of Caspase-3 after a 6h treatment in Jurkat cells 
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b)  Activation of Caspase-3 after a 24h treatment in Jurkat cells 

 

c)  Activation of Caspase-3 after a 48h treatment in Jurkat cells 
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d) Time-dependent analysis of Caspase-3 activation in Jurkat cells 

 

 

I. Evaluation of the ability of tropolones to enhance differentiation of 

perforin in Jurkat cells 

Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells play a critical 

role in the immune system by recognizing and directly destroying virally infected 

tumorigenic cells (2, 3, 71-77). NK cells are critical to the innate immune system 

whereas CTLs play important roles in adaptive immunity (2, 3, 73). Both types of 

cells kill their cellular targets by either secreting membrane-disrupting proteins 

known as perforin and a family of structurally related serine proteases known as 

granzymes that work together to induce apoptosis of the target cell (2, 71-77); 

alternatively, a second pathway involves the engagement and aggregation of 
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target-cell death receptors such as Fas (2, 3, 71-77). Studies in gene-disrupted 

mice have shown that the perforin pathway is closely involved in defense 

against viral pathogens and tumorigenic cells (73). Furthermore, HDACi have 

been reported to modify the immune system via various effects on regulatory T 

cells and lysis of tumor targets by T cells and natural killer cells (11, 12, 75-77). 

Interestingly, lower numbers of CTLs has been correlated with less favorable 

prognosis in patients with mycosis fungoides (MF), the most common form of 

CTCL (72).  

Therefore, we conducted a time-dependent analysis to evaluate the ability 

of the tropolones to differentiate perforin in Jurkat cells (Table 7; Figure 8). We 

used FACS analysis to monitor fluorescence intensities at multiple time points in 

Jurkat cells treated with 10 µM HDACi by sequentially incubating treated cells 

with primary antibodies for perforin followed by treatment with secondary 

antibodies conjugated with a fluorescein isothiocyanate (FITC; 58, 78-81 ). We 

determined values for geometric mean fluorescence intensities (GMFI), 

equivalent to the median cell population response, with the aid of the FlowJo 

Workstation. Detailed methods for experimental analysis are in Section G of the 

Materials and Methods chapter. Additional histograms are in the Appendix, 

section 40. 

After 6h and 12h treatments, both SAHA and compound 2 enhanced 

differentiation of perforin in Jurkat cells around the threshold of the untreated 
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control; but differentiation of perforin peaked after 48h by both SAHA and 

compound 2 resulting in an approximate two-fold increase in the differentiation 

of perforin. We hypothesize that the differentiation of perforin by the tropolones 

may lead to the cascade of events that we observed in our time-dependent 

analysis in Jurkat cells. Hence, our observations suggest that tropolones may be 

able to execute cell death by apoptosis via the perforin/granzyme pathway.  

Moreover, HDAC inhibitors such as valproic acid have been shown to 

improve sensitivity of Jurkat and humanhepatoma cells to NK cell-mediated 

killing (75, 76).  Furthermore, studies in genetically identical  murine tumor 

models of mammary, renal, prostate, and colorectal carcinomas have shown  

robust and prolonged eradication of solid tumors using SAHA combined with 

immune-stimulating antibodies, CD8(+) CTL that used perforin as the key 

immune effector molecule (77). These observations combined with our data for 

perforin differentiation suggest promising therapeutic applications and warrant 

further investigation of tropolones in combination with immune-activating 

antibodies for treatment of both solid tumors and hematological malignancies.  
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Table 7: Time-dependent analysis of the differentiation of perforin in Jurkat cells treated 
with 10 µM HDACi 

Treatment Perforin/Granzyme, GMFI 
GMFI = geometric mean fluorescence intensities 

6h  24h  48h  

Control  1.28  1.57  3.15  

 SAHA  1.52  2.32  6.29  

Compound 2  1.39  1.40  6.15  

 

 
 
Figure 8: Time-dependent analysis of the differentiation of perforin in Jurkat 
cells. Note that histograms represent the untreated control superimposed with 
the HDACi treatment for comparative analysis.  

 

a)   6h analysis of SAHA   b)  6h analysis of compound 2 
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c) 24h analysis of SAHA      d) 24h analysis of compound 2 

    

 

 

 

 

 

 

 

 

 

e) 48h analysis of SAHA  f) 48h analysis of compound 2 
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J. Preliminary studies on the synergistic effects of tropolones in breast 

cancer cells 

It has been previously reported that co-treatment of breast cancer cell 

lines including MCF-7 cells with HDACi such as SAHA resulted in synergistic 

anti-tumor activity presumably with a depletion of both the estrogen receptor (ER) 

and progesterone receptor (PR) (82). In clinical studies, a combination treatment 

of vorinostat and tamoxifen resulted in a reduction in the resistance of tamoxifen 

in breast cancer patients (83). In both preclinical and clinical studies, histone 

acetylation and HDAC2 expression were used as biomarkers to monitor the 

efficacy of the combination treatment. Given these observations, we conducted a 

preliminary assessment of the co-treatment of 10 µM compound 2 with the anti-

estrogen, tamoxifen, after 48h treatment in MCF-7 cells via FACS analysis (Table 

8). 10 µM served as the experimental control and we compared our data to 

published reports on synergistic effects in MCF-7 cells by SAHA (82). Detailed 

experimental methods are in Section K of the Materials and Methods chapter. 

 As expected, combination of SAHA with tamoxifen resulted in some 

increase in the induction of apoptosis when compared to either the untreated 

control (30.30% vs. 3.12%), SAHA treatment alone (21.50%), or even tamoxifen 

treatment alone (4.24%); however, a combination of compound 2 with tamoxifen 

did not result in significant increase when compared to compound 2 alone 

(6.68%% vs. 3.15%). Our  preliminary assessment of synergisitic effects in 

breast cancer cells warrants further investigation in multiple breast cancer cell 
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lines at multiple concentrations and time-points in addition to gene expression 

studies, gene knockdown studies and even cell cycle analyses in order to garner 

a more precise evaluation of the synergistic effects of tropolones in breast 

cancers. 

Table 8: Elucidation of synergistic effects in MCF-7 cells after a 48h treatment 

period 

Treatment % Apoptotic cells 

Control 3.12 

10 µM SAHA only 21.5 

10 µM Compound 2 only 6.68 

10 µM Tamoxifen only 4.24 

10 µM SAHA + 10 µM Tamoxifen 30.3 

10 µM Compound 2 + 10 µM Tamoxifen 3.15 
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Figure 9: Preliminary assessment of synergistic effects of 10 µM HDACi and 10 
µM tamoxifen after a 48h treatment in MCF-7 cells. y axis represents PI 
response whereas x axis represents Annexin V (AV) response. Quadrant 1 
(bottom left) represents intact (live) cells (AV-, PI-); Quadrant 2 (bottom right) 
represents early apoptotic cells (AV+, PI-); Quadrant 3 (top right) represents late 
apoptotic/necrotic cells ((AV+, PI+).  

 
 
a) Control      b)  SAHA only 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
c) Compound 2 only     d) Tamoxifen only 
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e) Tamoxifen + SAHA    f) Tamoxifen + Compound 2 
 

 

 
 
 

K. Conclusions 

Apoptosis is a highly complex process that is implicated in many disease 

areas including cancers and neurological disorders. The induction of apoptosis 

is marked by specific biochemical events such as the exposure of phosphatidyl 

serine on the outer leaflet of the plasma membrane as well as the activation of 

caspases. There are three major mechanisms of apoptosis and these apoptotic 

pathways include: extrinsic (death receptor or receptor-activated), intrinsic 

(mitochondrial or stress-activated), and the granzyme/perforin pathway. HDACi, 

including SAHA, have been reported to alter both the intrinsic and extrinsic 

apoptotic pathways. Our comprehensive analysis of the induction of apoptosis 

shows that tropolones induce apoptosis in a time-dependent manner in both 



www.manaraa.com

190 

 

Jurkat and HuT-78 cells. Our preliminary assessment of the synergistic effects 

of tropolones in MCF-7 cells indicates that a more comprehensive analysis in 

multiple breast cancer cell lines, at multiple concentrations, and an inclusion of 

gene expression studies will be required for a more precise analysis of 

synergistic effects. We also showed that tropolones initiate apoptosis in a 

caspase-8 independent manner but the activation of caspase-3 may be 

essential for the execution of apoptosis by tropolones. Finally, we discovered 

that tropolones are able to enhance differentiation of perforin in Jurkat cells in a 

time-dependent manner.  Our observations suggest that tropolones may be able 

to execute cell death by apoptosis via the perforin/granzyme pathway and 

warrant further investigation particularly with regards to combining tropolones 

with immune-activating antibodies for robust and prolonged treatment of solid 

tumors and hematological malignancies.  

L. References  

 
1. Wu, X., Kassie, F., & Mersch-Sundermann, V. Induction of apoptosis in 

tumor cells by naturally occurring sulfur-containing compounds. Mutat Res. 
2005;589(2):81-102. 

2. Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 
2007: 35 (4): 495-516. 

3. Weinberg, R. The Biology of Cancer. New York, NY: Garland Science, Taylor 
& Francis Group, LLC., 2007.   

4. Zhou, Q., Dalgard, C.L., Wynder, C., et.al., Histone deacetylase inhibitors 
SAHA and sodium butyrate block G1-to-S cell cycle progression in 
neurosphere formation by adult subventricular cells. BMC Neurosci. 2011; 
12:50. 

5. Ouaissi, M., Cabral, S., Tavares, J., et al. Histone deacetylase (HDAC) 
encoding gene expression in pancreatic cancer cell lines and cell sensitivity 
to HDAC inhibitors. Cancer Biol Ther. 2008; 7(4): 523-531. 



www.manaraa.com

191 

 

6. Lobjois, V., Frongia, C., Jozan, S., et.al. Cell cycle and apoptotic effects of 
SAHA are regulated by the cellular microenvironment in HCT116 
multicellular tumour spheroids. Eur J Cancer. 2009; 45(13):2402-11.  

7. Knutson, A.K., Welsh, J., Taylor, T., et.al. Comparative effects of histone 
deacetylase inhibitors on p53 target gene expression, cell cycle and 
apoptosis in MCF-7 breast cancer cells. Oncol Rep. 2012; 27(3):849-53.  

8. Ononye, S.N., van Heyst, M., Falcone, E., et.al. Toward isozyme selective 
histone deacetylase inhibitors as therapeutic agents for the treatment of 
cancer.  Pharm. Patent Analyst 2012; 1 (2), 207-221.  

9. Lemoine, M. & Younes, A.  Histone deacetylase inhibitors in the treatment of 
lymphoma. Discov Med. 2010; 10 (54): 462-70 

10. Ouaissi, M., Giger, U., Sielezneff, I., et al. Rationale for possible targeting of 
histone deacetylase signaling in cancer diseases with a special reference to 
pancreatic cancer. J Biomed Biotechnol. 2011: 315939. 

11. Khan, O., & La Thangue, N.B. HDAC inhibitors in cancer biology: emerging 
mechanisms and clinical applications. Immunol Cell Biol. 2012; 90(1):85-94.  

12. Khan, O., & La Thangue, N.B. Drug Insight: histone deactylase inhibitor-
based therapies for cutaneous T-cell lymphomas. Nat Clin Pract Oncol. 
2008;5 (12):714-26. 

13. Hagelkruys, A., Sawicka, A., Rennmayr, M., et.al. The biology of HDAC in 
cancer: the nuclear and epigenetic components. Handb Exp. Pharmacol. 
2011; 206: 13-37. 

14. Wozniak, M.B., Villuendas, R., Bischoff, J.R., et.al. Vorinostat interferes with 
the signaling transduction pathway of T-cell receptor and synergizes with 
phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma.  

15. Tang, Y.A., Wen, W.L., Chang, J.W., et. al. A novel histone deacetylase 
inhibitor exhibits antitumor activity via apoptosis induction, F-actin disruption 
and gene acetylation in lung cancer. PLoS One. 2010; 5(9):e12417.  

16. Miller, C.P., Rudra, S., Keating, M.J., et. al. Caspase-8 dependent histone 
acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for 
synergy in leukemia cells. Blood. 2009; 113(18):4289-99.  

17. Almenara J, Rosato R, & Grant S. Synergistic induction of mitochondrial 
damage and apoptosis in human leukemia cells by flavopiridol and the 
histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). 
Leukemia. 2002; 16(7):1331-43. 

18. Huang, L., & Pardee, A. Suberoylanilide Hydroxamic Acid as a Potential 
Therapeutic Agent for Human Breast Cancer Treatment. Mol Med. 2000; 6 
(10): 849-866. 

19. Zhang, Q-L, Wang, L., Zhang, J.W., et.al. The proteasome inhibitor 
bortezomib interacts synergistically with the histone deacetylase inhibitor 
suberoylanilide hydroxamic acid to induce T-leukemia/lymphoma cells 
apoptosis. Leukemia 2009; 23 (8): 1507–1514.  

http://www.ncbi.nlm.nih.gov/pubmed?term=Tang%20YA%5BAuthor%5D&cauthor=true&cauthor_uid=20856855
http://www.ncbi.nlm.nih.gov/pubmed?term=Wen%20WL%5BAuthor%5D&cauthor=true&cauthor_uid=20856855
http://www.ncbi.nlm.nih.gov/pubmed?term=Chang%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=20856855


www.manaraa.com

192 

 

20. LaBonte, M.J., Wilson, P.M., Fazzone, W., et.al. DNA microarray profiling of 
genes differentially regulated by the histone deacetylase inhibitors vorinostat 
and LBH589 in colon cancer cell lines. BMC Med Genomics 2009; 2:67 

21. Ulrike, H., Rademacher, J., Lamottke, B., et.al. Synergistic interaction of the 
histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib 
in cutaneous T cell lymphoma. Eur J  Haematol 2009; 82 (6): 440–449. 

22. Schrump, D.S.  Cytotoxicity Mediated by Histone Deacetylase Inhibitors in 
Cancer Cells: Mechanisms and Potential Clinical Implications. Clin. Cancer. 
Res 2009; 15: 3947-3957. 

23. Ruefli, A.A., Ausserlechner, M.J., Bernhard, D., et. al. The histone 
deacetylase inhibitor and chemotherapeutic agent suberoylanilide 
hydroxamic acid (SAHA) induces a cell-death pathway characterized by 
cleavage of Bid and production of reactive oxygen species. Proc Natl Acad 
Sci U S A. 2001; 98(19):10833-8.  

24. Marks, P.A., & Dokmanovic, M.  Histone deacetylase inhibitors: discovery 
and development as anticancer agents. Expert Opin Investig Drugs 2005; 
14(12):1497-511. 

25. Kong, Y., Jung, M., Wang, K., et. al. Histone deacetylase cytoplasmic 
trapping by a novel fluorescent HDAC inhibitor. Mol Cancer Ther. 2011;10 
(9):1591-9.  

26. Bolden, J.E., Peart, M.J., & Johnstone, R.W. Anticancer activities of histone 
deacetylase inhibitors. Nat Rev Drug Discov. 2006; 5(9):769-84. 

27. Frew, A.J., Johnstone, R.W, & Bolden, J.E. Enhancing the apoptotic and 
therapeutic effects of HDAC inhibitors. Cancer Lett. 2009; 280(2):125-33.  

28. Vigushin, D.M., Ali, S., Pace, P.E., et al. Trichostatin A is a histone 
deacetylase inhibitor with potent antitumor activity against breast cancer in 
vivo. Clin Cancer Res, 2001; 7(4): 971-6. 

29. Huang, L., & Pardee, A.B. Suberoylanilide hydroxamic acid as a potential 
therapeutic agent for human breast cancer treatment. Mol Med. 2000; 
6(10):849-66. 

30. Walker, G.E., Wilson, E.M., Powell, D., et al., Butyrate, a histone deacetylase 
inhibitor, activates the human IGF binding protein-3 promoter in breast 
cancer cells: molecular mechanism involves an Sp1/Sp3 multiprotein 
complex. Endocrinology, 2001; 142(9): 3817-27. 

31. Cao, Z.A., Bass, K.E., Balasubramanian, S., et al. CRA-026440: a potent, 
broad-spectrum, hydroxamic histone deacetylase inhibitor with 
antiproliferative and antiangiogenic activity in vitro and in vivo. Mol Cancer 
Ther, 2006; 5(7): 1693-701. 

32. Thaler, F., Colombo, A., Mai, A., et al., Synthesis and biological evaluation of 
N-hydroxyphenylacrylamides and N-hydroxypyridin-2-ylacrylamides as novel 
histone deacetylase inhibitors. J Med Chem. 2010; 53(2):  822-39. 

http://www.ncbi.nlm.nih.gov/pubmed?term=SAHA%20MCF-10A


www.manaraa.com

193 

 

33. Vannini, A., Volpari, C., Filocamo, G., et al. Crystal structure of a eukaryotic 
zinc-dependent histone deacetylase, human HDAC8, complexed with a 
hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 2004; 101(42): 15064-9. 

34. Ontoria, J.M., Altamura, S., Di Marco, A., et al. Identification of novel, 
selective, and stable inhibitors of class II histone deacetylases. Validation 
studies of the inhibition of the enzymatic activity of HDAC4 by small 
molecules as a novel approach for cancer therapy. J Med Chem 2009; 
52(21): 6782-9. 

35. Na, Y.S., Jung, K.A., Kim, S.M., et. al. The histone deacetylase inhibitor 
PXD101 increases the efficacy of irinotecan in in vitro and in vivo colon 
cancer models. Cancer Chemother Pharmacol. 2011; 68 (2):389-98. 

36. Attenni, B., Ontoria, B., Cruz, J.C., et al., Histone deacetylase inhibitors with 
a primary amide zinc binding group display antitumor activity in xenograft 
model. Bioorg Med Chem Lett, 2009; 19(11):  3081-4. 

37. Portanova, P., Russo, T., Pellerito, O., et.al. The role of oxidative stress in 
apoptosis induced by the histone deacetylase inhibitor suberoylanilide 
hydroxamic acid in human colon adenocarcinoma HT-29 cells. Intl J Oncol. 
2008; 33(2): 325-31. 

38. Blagosklonny, M., Robey, R., Bates, S., et.al. Pretreatment with DNA-
damaging agents permits selective killing of checkpoint-deficient cells by 
microtubule-active drugs.  J. Clin. Invest. 2000; 105: 533–553 

39. Clocchiatti A., Di Giorgio, E., Ingrao, S., et.al. Class IIa HDACs repressive 
activities on MEF2-depedent transcription are associated with poor 
prognosis of ER+ breast tumors. FASEB J. 2012 Nov 16. [Epub ahead of 
print] 

40. Zafar, S.F., Nagaraju, G.P., & El-Raves, B. Developing histone deacetylase 
inhibitors in the therapeutic armamentarium of pancreatic adenocarcinoma. 
Expert Opin Ther Targets. 2012; 16(7):707-18. 

41. Ouaissi, M., & Ouaissi, A. Histone deacetylase enzymes as potential drug 
targets in cancer and parasitic diseases. J Biomed Biotechnol 2006; 2006 
(2): 13474. 

42. Bajbouj, K., Mawrin, C., Hartig, R., et.al. P53-dependent antiproliferative and 
pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells. J 
Neurooncol. 2012; 107(3):503-16. 

43. Vinodhkumar, R., Song, Y-S., & Devaki, T.  Romidepsin (depsipeptide) 
induced cell cycle arrest, apoptosis and histone hyperacetylation in lung 
carcinoma cells (A549) are associated with increase in p21 and 
hypophosphorylated retinoblastoma proteins expression. Biomed 
Pharmacother. 2008; 62(2):85-93. 

44. Weichert, W. HDAC expression and clinical prognosis in human 
malignancies. Cancer Letters. 2009; 280: 168-176. 

45. Leoni, F., Zaliani, A., Bertolini, G., et.al. The antitumor histone deacetylase 
inhibitor suberoylanilide hydroxamic acid exhibits anitinflammatory properties 

http://www.ncbi.nlm.nih.gov/pubmed?term=Clocchiatti%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23159930
http://www.ncbi.nlm.nih.gov/pubmed/23159930
http://www.ncbi.nlm.nih.gov/pubmed/17644301
http://www.ncbi.nlm.nih.gov/pubmed/17644301


www.manaraa.com

194 

 

via suppression of cytokines. Proc Natl Acad Sci U S A 2012; 99 (5):2995-
3000 

46. Lai, M.J., Huang, H.L., Pan, S.L., et. al. Synthesis and biological evaluation 
of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles as potent histone 
deacetylase inhibitors with antitumor activity in vivo. J Med Chem. 2012 26; 
55(8):3777-91. 

47. Krennhrubec, K., Marshall, B.L., Hedglin, M., et al., Design and evaluation of 
'Linkerless' hydroxamic acids as selective HDAC8 inhibitors. Bioorg Med 
Chem Lett, 2007; 17(10):  2874-8. 

48. Butler, L.M., Agus, D. B., Scher, H.I., et al. Suberoylanilide hydroxamic acid, 
an inhibitor of histone deacetylase, suppresses the growth of prostate cancer 
cells in vitro and in vivo. Cancer Res 2000; 60(18): 5165-70. 

49. Dokmanovic, M., C. Clarke, & Marks, P.A. Histone deacetylase inhibitors: 
overview and perspectives. Mol Cancer Res 2007; 5(10): 981-9. 

50. Estiu, G., West, N., Mazitschek, R., et al. On the inhibition of histone 
deacetylase 8. Bioorg Med Chem. 2010; 18 (11):  4103-10. 

51. Furumai, R., Komatsu, Y., Nishino, N., et al., Potent histone deacetylase 
inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including 
trapoxin. Proc Natl Acad Sci U S A, 2001; 98(1): 87-92. 

52. Garber, K. HDAC inhibitors overcome first hurdle. Nat Biotechnol 2007; 
25(1): 17-9. 

53. Hrzenjak, A., Moinfar, F., Kremser, M.L., et al. Histone deacetylase inhibitor 
vorinostat suppresses the growth of uterine sarcomas in vitro and in vivo. 
Mol Cancer. 2010; 9: 49. 

54. Marks, P., Rifkind, R.A., Richon, V.M., et. al. Histone deacetylases and 
cancer: causes and therapies. Nat Rev Cancer. 2001;1(3):194-202. 

55. Noureen, N., H. Rashid, & Kalsoom, S. Identification of type-specific 
anticancer histone deacetylase inhibitors: road to success. Cancer 
Chemother Pharmacol. 2010; 66(4):625-33. 

56. Paris, M., Porcelloni, M., Binaschi, M., et al. Histone deacetylase inhibitors: 
from bench to clinic. J Med Chem 2008; 51(6): 1505-29. 

57. Dickinson, M., Johnstone, R.W., & Prince, H.M. Histone deacetylase 
inhibitors: potential targets responsible for their anti-cancer effect. Invest 
New Drugs. 2010; 28 Suppl 1:S3-20. 

58. Morales, J.C., Ruiz-Magana, M.J., Carranza, D., et. al. HDAC inhibitors with 
different gene regulation activities depend on the mitochondrial pathway for 
the sensitization of leukemic T cells to TRAIL-induced apoptosis. Cancer 
Lett. 2010; 29 7(1):91-100. 

59. Shi, Z-J., Ouyang, D-Y., Zhu, J-S., et. al. Histone deacetylase inhibitor 
suberoylanilide hydroxamic acid exhibits anti-inflammatory activities through 
induction of mitochondrial damage and apoptosis in activated lymphocytes. 
Int Immunopharmacol. 2012; 12(4):580-7. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=International+Immunopharmacology+12+%282012%29+580%E2%80%93587


www.manaraa.com

195 

 

60. Spurling, C.C., Godman, C.A., Noonan, E.J., et. al. HDAC3 Overexpression 
and Colon Cancer Cell Proliferation and Differentiation, Mol. Carc. 2008; 43: 
137-147. 

61. Liu, S., & Yamauchi, H. Hinokitiol, a metal chelator derived from natural 
plants, suppresses cell growth and disrupts androgen receptor signaling in 
prostate carcinoma cell lines. Biochem Biophys Res Commun, 2006; 351(1): 
26-32. 

62. Liu, X., Zou, H., Slaughter, C., et.al. DFF, a Heterodimeric Protein That 
Functions Downstream of Caspase-3 to Trigger DNA Fragmentation during 
Apoptosis. Cell. 1997; 89 (2): 175–184. 

63. Vermes, I., Haanen, H., Steffens-Nakken, H., et. al. A novel assay for 
apoptosis: Flow cytometry detection of phosphatidylserine expression on 
early apoptotic cells using fluorescein labeled annexin V. J Immunol Methods 
1995; 184 (1):39-51. 

64. Verhoven, B., Schlegel R.A., & Williamson, P. Mechanisms of 
phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T 
lymphocytes, J Experimental Med 1995;182 (5): 1597-601. 

65. Nicoletti I., Migliorati, G., Pagliacci, M.C., et.al. A rapid and simple method for 
measuring thymocyte apoptosis by propidium iodide staining and flow 
cytometry. J. Immunol Methods 1991; 139:271-9. 

66. Smolewski, P., Grabarek, J, Halicka, H.D., et. al. Assay of caspase activation 
in situ combined with probing plasma membrane integrity to detect three 
distinct stages of apoptosis. J Immunol Methods. 2002; 265(1-2):111-21. 

67. Ekert, P.G., Silke, J., & Vaux, D.L. Caspase inhibitors. Cell Death Differ. 
1999 ;6 (11):1081-6.  

68. Porter, A.G., & Janicke, R.U. Emerging Roles of Caspase-3 in Apoptosis, 
Cell Death and Differentiation. Cell Death Differ. 1999; 6 (2): 99-104. 

69. Liu, D., Li, C., Chen, Y., et. al. Nuclear import of proinflammatory 
transcription factors is required for massive liver apoptosis induced by 
bacterial lipopolysaccharide. J Biol Chem. 2004; 279(46):48434-42. 

70. Ren, Y.G., Wagner, K.W., Knee, D.A., et. al.  Differential regulation of the 
TRAIL death receptors DR4 and DR5 by the signal recognition particle. Mol 
Biol Cell. 2004; 15(11):5064-74. 

71. Uellner, R., Zvelebil, M.J., Hopkins, J., et. al. Perforin is activated by a 
proteolytic cleavage during biosynthesis which reveals a phospholipid-
binding C2 domain. EMBO J. 1997; 16 (24):7287-96. 

72. Asadullah, K., Friedrich, M., & Döcke, W.D., et. al. Enhanced expression of 
T-cell activation and natural killer cell antigens indicates systemic anti-tumor 
response in early primary cutaneous T-cell lymphoma. J Invest Dermatol. 
1997; 108(5):743-7. 

73. Trapani, J.A., & Smyth, M.J. Functional significance of the perforin/granzyme 
cell death pathway. Nat Rev Immunol. 2002; 2 (10):735-47. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Migliorati%20G%5BAuthor%5D&cauthor=true&cauthor_uid=1710634
http://www.ncbi.nlm.nih.gov/pubmed?term=Pagliacci%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=1710634
http://www.ncbi.nlm.nih.gov/pubmed?term=Smolewski%20P%5BAuthor%5D&cauthor=true&cauthor_uid=12072182
http://www.ncbi.nlm.nih.gov/pubmed?term=Grabarek%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12072182
http://www.ncbi.nlm.nih.gov/pubmed?term=Halicka%20HD%5BAuthor%5D&cauthor=true&cauthor_uid=12072182
http://www.ncbi.nlm.nih.gov/pubmed/?term=J+Immunol+Methods+265%2C+111+%282002%29
http://www.ncbi.nlm.nih.gov/pubmed?term=Ekert%20PG%5BAuthor%5D&cauthor=true&cauthor_uid=10578177
http://www.ncbi.nlm.nih.gov/pubmed?term=Silke%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10578177
http://www.ncbi.nlm.nih.gov/pubmed?term=Vaux%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=10578177
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cell+Death+and+Diff.+6%2C+1081+%281999%29
http://www.ncbi.nlm.nih.gov/pubmed?term=Liu%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15345713
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15345713
http://www.ncbi.nlm.nih.gov/pubmed?term=Chen%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=15345713
http://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%2C+D.+et+al+.+%282004%29+Nuclear+import+of+proinflammatory+transcription+factors+is+required+for+massive+liver+apoptosis+induced+by+bacterial+lipopolysaccharide.+J.+Biol.+Chem.+279+%2C+48434%E2%80%9342.
http://www.ncbi.nlm.nih.gov/pubmed?term=Ren%20YG%5BAuthor%5D&cauthor=true&cauthor_uid=15356269
http://www.ncbi.nlm.nih.gov/pubmed?term=Wagner%20KW%5BAuthor%5D&cauthor=true&cauthor_uid=15356269
http://www.ncbi.nlm.nih.gov/pubmed?term=Knee%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=15356269
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ren%2C+Y.G.+et+al.+%282004%29+Differential+regulation+of+the+TRAIL+death+receptors+DR4+and+DR5+by+the+signal+recognition+particle.+Mol.+Biol.+Cell+15+%2C+5064%E2%80%9374.
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ren%2C+Y.G.+et+al.+%282004%29+Differential+regulation+of+the+TRAIL+death+receptors+DR4+and+DR5+by+the+signal+recognition+particle.+Mol.+Biol.+Cell+15+%2C+5064%E2%80%9374.


www.manaraa.com

196 

 

74. Barry, M., & Bleackley, R.C. Cytotoxic T lymphocytes: all roads lead to 
death. Nat Rev Immunol. 2002; 2(6):401-9. 

75. Armeanu, S., Bitzer, M., Lauer, U.M., et. al. Natural killer cell-mediated lysis 
of hepatoma cells via specific induction of NKG2D ligands by the histone 
deacetylase inhibitor sodium valproate. Cancer Res.2005; 65 (14): 6321–
6329. 

76. Skov, S., Pedersen, M.T., Andresen, L., et. al. Cancer cells become 
susceptible to natural killer cell killing after exposure to histone deacetylases 
inhibitors due to glycogen synthase kinase-3-dependent expression of MHC 
class I-related chain A and B. Cancer Res. 2005; 65 (23):11136–11145. 

77. Christiansen, A.J., West, A., Banks, K.M. et. al. Eradication of solid tumors 
using histone deacetylase inhibitors combined with immune-stimulating 
antibodies. Proc Natl Acad Sci U S A. 2011;108 (10):4141-6. 

78. Verma, R., Rigatti, M.J., Belinsky, G.S., et. al. DNA damage response to the 
Mdm2 inhibitor nutlin-3. Biochem Pharmacol. 2010 ;79(4):565-74.  

79. Yale School of Medicine. Introduction to Flow Cytometry: A Learning Guide. 
Retrieved from: 
http://medicine.yale.edu/labmed/cellsorter/start/411_66019_Introduction.pdf 

80. Herzenberg, L.A., Tung, J., Moore, W.A., et. al. Interpreting flow cytometry 
data: a guide for the perplexed. Nat Immunol. 2006; 7(7):681-5. 

81. Qu, C.X., Wang, J.Z., Wan, W.H., et.al. Establishment of a flow cytometric 
assay for determination of human platelet glycoprotein VI based on a mouse 
polyclonal antibody. J Clin Lab Anal. 2006; 20(6):250-4. 

82. Bicaku, E., Marchion, D.C., Schmitt, M.L., et.al. Selective inhibition of histone 
deacetylase 2 silences progesterone receptor-mediated signaling. Cancer 
Res 2008; 68: 1513-1519. 

83. Munster, P.N., Thurn, K.T., Thomas, S., et.al. A phase II study of the histone 
deacetylases inhibitor vorinostat combined with tamoxifen for the treatment 
of patients with hormone therapy-resistance breast cancer. Br J Cancer 
2011; 104: 1828-1835. 

 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bleackley%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=12093006
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cytotoxic+T+lymphocytes%3A+all+roads+lead+to+death
http://www.ncbi.nlm.nih.gov/pubmed/19788889
http://www.ncbi.nlm.nih.gov/pubmed?term=Herzenberg%20LA%5BAuthor%5D&cauthor=true&cauthor_uid=16785881
http://www.ncbi.nlm.nih.gov/pubmed?term=Tung%20J%5BAuthor%5D&cauthor=true&cauthor_uid=16785881
http://www.ncbi.nlm.nih.gov/pubmed?term=Moore%20WA%5BAuthor%5D&cauthor=true&cauthor_uid=16785881
http://www.ncbi.nlm.nih.gov/pubmed/?term=herzenberg+perplexed


www.manaraa.com

197 

 

Chapter 9  

Characterizing other natural product derivatives as anticancer agents: viridin 

analogs 

A. Introduction 

Collaborations between the Wright and Anderson laboratories have led 

to the development of tropolones as well as furanosteroidal natural product 

derivatives as potential therapeutic agents for the treatment of infectious 

diseases, cancer and neurodegenerative diseases (1, 2). The furanosteroidal 

natural products (Figure 1), wortmannin and viridin, are potent antifungal 

metabolites isolated from Penicillium wortmannii and Gliocladium virens 

respectively (1, 3-5). We have recently reported our efforts to characterize 

these viridin analogs as inhibitors of phosphoinositide 3-kinase (PI3K) 

enzymes (1). Our interest in these viridin analogs as PI3K inhibitors stems 

from several studies that indicate that small molecules capable of inhibiting 

PI3K signaling show promising applications in a diverse number of 

therapeutic areas including autoimmune disorders, cardiovascular diseases 

and cancer (1, 3-11).  

Both wortmannin and viridin are potent, irreversible, pan-PI3K inhibitors 

with IC50 values of 2-10 nM (1). However, wortmannin has significant stability, 

solubility and toxicity issues that limit its therapeutic uses (1, 3-5). Therefore, 

the purpose of this chapter is to discuss the biological activities of viridin 
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analogs that were synthesized by the Wright laboratories with the goal of 

improving PI3K enzyme selectivity as well as antiproliferative activities in 

multiple cell lines.  

 

       a)                                                    b)  

 

 

                               

 

 

Figure 1: Structures of a) wortmannin and b) viridin 

 

B. Biological and clinical significance of the PI3K signaling pathway 

Cancer is a complex disease and there are multiple pathways that play 

important roles in carcinogenesis and mutagenesis (12). Since the discovery 

of the tyrosine kinase inhibitor Gleevec in 2001, there has been growing 

interest in protein and lipid kinases for the treatment of cancer and many 

other diseases (13-17). The PI3K signaling pathway is presumably the most 

commonly altered in human cancers (10, 18, 19). PI3Ks are a ubiquitously 

expressed family of enzymes that through the generation of phospholipids 
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serve as secondary messengers by modulating the levels of 

phosphotidylinasitol (PIs) in cells (1, 5, 10, 12, 17-20). PI3Ks influence many 

cellular functions including cell signaling, cell growth, cell‐cycle progression, 

cell survival, motility, cell development and differentiation (7, 12, 17-20).  

PI3Ks catalyze the phosphorylation of phosphoinositides from ATP to 

3’-OH of the inositol ring for three different substrates: phosphotidylinasitol 

(PI), phosphatidyl inositol 4 phosphate (PI4P), and phosphatidyl inositol 4, 5-

bisphosphate (PI(4, 5)P2). Based on substrate specificity, PI3Ks are classified 

into three groups: I, II, III. (1, 5, 5, 19, 20).  Class I PI3Ks are the most studied 

and consist of heterodimeric proteins with a smaller 85 kDa regulatory domain 

and a larger 110 kDa catalytic subunit (10). Class I PI3Ks occur in four 

isoforms subdivided into Class 1a (p110α, p110β, & p110σ) and Ib (p110γ). 

Studies in gene-targeted mice have shown that class 1A PI3Ks, particularly 

p110α, are important for vascular development & angiogenesis (7-9). The 

constitutive activation of PI3K signaling usually seen in many cancers is 

presumably as a result of the simultaneous promotion of proliferation and 

inhibition of cell death (6).  However, the cross inhibition that is often 

observed with protein kinases has also made it very difficult to develop 

selective PI3K inhibitors (1, 5, 8, 10, 11).  Yet, many natural products and 

corresponding derivatives are currently being explored for the development of 

more effective lipid and protein kinase inhibitors that selectively target these 

kinases while maintaining therapeutic efficiency  (1, 3, 5, 8-11, 17, 21-27). 
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C. Evaluation of biological activity 

Key enzyme kinetic parameters values for the class I PI3K enzyme, 

p110α and the PI substrate were obtained via a luminescent assay that 

correlates kinase activity to luminescence. Detailed experimental methods are 

reported in Section N of the Materials and Methods Chapter. Assay data were 

analyzed via non-linear regression analysis (GraphPad Prism Software, Inc., 

CA; 28). Best fit values are highlighted in Table 1 and Figure 1. Standard 

error values are reported in the Appendix, Section 41.   

 

Table 1: Elucidation of key enzyme parameters for the class I PI3K enzyme, 
p110α and the PI substrate 

 

 

p110α 

KM  (μM) 

 

Vmax (μM) 

 

kcat (s
-1) kcat /KM (M

-1 s-1) 

 

9.64 ± 1.93 

 

3453.00 ± 90.94 

 

5.96 

 

617.875.10 
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Figure 2: Non-linear regression analysis of p110-alpha activity.  

 

We recently reported our evaluation of PI3K-alpha inhibition IC50 values 

for the three viridin analogs (compounds 1a, 2a, & 3a) using a luminescent assay 

that correlates kinase activity to luminescence (Table 2; 1). Detailed experimental 

methods are reported in Section O of the Materials and Methods Chapter. We 

converted IC50 values to Ki values, using methods described by Cheng and 

Prusoff (29). We also evaluated the antiproliferative effects in three cell lines: 

HCT116 colon cancer cell line, U87 glioblastoma cell line, and MCF-7 breast 

cancer cell line (Table 2; 1).  All three viridin analogs exhibited submicromolar 

inhibition of PI3K-α even though the IC50 values obtained were not as low as that 

of wortmannin (IC50 = 11.9 nM). 
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None of the compounds were able to inhibit the growth of the colon cancer 

cell line, HCT116; however, compound 1a and 2a inhibited growth of the MCF-7 

breast cancer cell line with GI50 values of 22.9 µM and 37.7 µM respectively. 

Interestingly, a higher potency for PI3K-α inhibition resulted in reduced growth 

inhibition of the MCF-7 cells since compound 1a and 2a had higher IC50 values 

Table 2: Elucidation of biological activity for viridin analogs[1]. 

Compound Structure IC50, 
p110α/p85α  

(nM) 

Ki 
(nM) 

GI50 (µM) 

PI substrate HCT116 U87 MCF-7 

1a 

 

 
 

338.9 

 
 

284.1 
 

 
 

>100 

 
 

>100 

 
 

22.9 

2a 

 

 
 

270.5 

 

226.8 

 

>100 

 

>100 

 

37.7 

3a 

 

 
 

177.5 

 

148.8 

 

>100 

 

>100 

 

>100 

 
 

Wortmannin 

 
 

11.9 

 

9.99 

 

>100 

 
 

>100 

 

>100 
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for the PI3K-α relative to compound 3a and wortmannin respectively. Hence, our 

results are promising and show potential for further development of viridin 

analogs as targeted therapies for the treatment of cancer.   

D. Conclusions and future directions 

Natural products and corresponding derivatives have found diverse 

applications in the treatment of neurodegenerative diseases as well as in the 

treatment of various microbial diseases and cancer. Since the discovery of 

Gleevec in 2001, there has been a growing interest in the development of other 

kinase inhibitors for the treatment of many cancers. Small molecule inhibitors of 

the PI3K pathway show promise as anticancer agents but cross-inhibition that is 

often observed with protein kinases has also made it very difficult to develop 

selective PI3K inhibitors. Our viridin analogs are highly promising PI3K inhibitors 

that exhibit submicromolar inhibition of the class I PI3K enzyme, p110α. Unlike 

wortmannin, two of our analogs, 1a and 2a, also inhibited the growth of the MCF-

7 breast cancer cell line. Future investigations will also explore the synthesis of 

structurally diverse viridin analogs as well as the inhibition of other PI3K isoforms 

and multiple cell lines for the evaluation of isozyme selectivity and cancer cell line 

selective cytotoxicity respectively by our current library.  
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Chapter 10  

Comprehensive Analysis and Future Directions 

A. Research summary and emerging directions 

Cancer is the second leading cause of death in the United States and 

a major cause of death worldwide (1-5). The development of natural product 

derivatives for the treatment of cancer and many other diseases has been a 

trend in medicinal chemistry for over 25 years (6-19).  Given that the PI3K 

signaling pathway is presumably the most commonly altered in human 

cancers (20-22), a biological analysis was performed on three furanosteroidal 

natural product derivatives synthesized by the Wright laboratory in order to 

evaluate enzyme inhibition and cytotoxicity in cultured human cancer cell 

lines. Evaluation of the three viridin analogs as PI3K inhibitors showed great 

promise particularly given submicromolar inhibition of a class I PI3K, p110α 

(23) . Unlike the well known, pan-PI3K inhibitor, wortmannin, two of the viridin 

analogs, 1a and 2a, also inhibited the growth of the MCF-7 breast cancer cell 

line (23). Future investigations will explore the synthesis of structurally diverse 

viridin analogs as well as the inhibition of other PI3K isoforms and multiple 

cell lines for the evaluation of isozyme selectivity and cancer cell line selective 

cytotoxicity respectively by our current library. 

Alternatively, inhibitors that target major enzymes involved in 

epigenetic alterations, particularly HDACs, are also growing more popular in 
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cancer research because of the ability of these inhibitors to reversibly induce 

terminal differentiation of transformed cells presumably as a result of 

chromatin modulation (24-60). To date, two HDACi, Zolinza (vorinostat; 

SAHA) and Istodax (romidepsin) have been approved by the FDA for the 

treatment of cutaneous T-cell lymphoma (CTCL). Through an in-house 

collaborative effort, derivatives of hinokitiol (β-thujaplicin), a troplone-derived 

natural product are being developed by the Wright and Anderson laboratories 

as HDAC inhibitors (HDACi).  Thujaplicins are a family of small tropolone-

derived natural products that are associated with a wide range of biological 

effects (62-66).There are fourteen compounds currently in the tropolone 

library and the studies presented in this dissertation are the the first reported 

comprehensive analysis of tropolones as HDAC inhibitors.    

Functional and biochemical studies were employed in this dissertation 

research to elucidate the mechanisms of action of fourteen tropolones as 

HDACi.  Experimental data indicate that tropolones selectively target HDAC2 

and HDAC8 in a competitive manner and at nanomolar potency. Mode of 

binding studies for compound 2 in HDAC8 suggest that tropolones inhibit 

HDACs in a competitive manner.  Moreover, efforts are currently in place by 

the Anderson laboratory to gain further structural insights on HDAC8 binding 

by solving the three-dimensional crystal structure of the ACA-HDAC8 protein 

bound to a tropolone using preliminary methods for expression and 

purification described in this dissertation.  
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 Furthermore, the tropolones show greater potency for HDAC2 

inhibition relative to HDAC8. For example, compound 9 exhibits greater than 

500-fold selectivity towards HDAC2 relative to HDAC8. This observation is 

highly promising and shows that it is possible to develop these tropolones as 

HDAC2-selective inhibitors particularly given that there are no reported 

HDAC2-selective inhibitors in pre-clinical and clinical development because of 

high degree of similarity in class I HDACs especially HDAC-1, -2, and -3 (33). 

Besides, it is well established that HDACi have multiple therapeutic purposes 

and have found success in the treatment of cancer, neurological disorders 

and neurodegenerative diseases (24-60). 

 Moreover, the natural product, hinokitiol (compound 10), has been 

shown to possess in vitro neuroprotective activity in HT22 cells, a neuronal 

cell line derived from mouse hippocampus that lack glutamate receptors (62).  

It is believed that the presence of the tropolone scaffold results in compounds 

with high potency against oxidative stress-induced cell death of HT22 cells 

that is typically implicated in Alzheimer’s disease and many 

neurodegenerative disorders (62). Concurrently, HDAC2 inhibition has been 

shown to facilitate learning and memory in wild-type mice as well as in mouse 

models of neurodegeneration (26, 60). Our studies may have shown that the 

reported neuroprotective effects of hinokitiol may be as a result of HDAC2 

inhibition but we cannot rule out the fact that other HDAC family members 

and nonhistone substrates may also be modulated by treatment with the 
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tropolones (62). Nevertheless, our preliminary assessments indicate that it is 

possible to explore the use of tropolones in the treatment of 

neurodegenerative diseases.  

Tropolones also display cancer cell line selective cytotoxicity as 

evidenced by preferential inhibition to the two hematological cell lines, Jurkat 

and HuT-78.  It can be deduced that selective HDAC inhibition may result in 

reduced toxicity profiles (25, 32-37, 41, 43-46, 49, 55, 57, 58, 67, 68) as 

further evidenced by biochemical data that shows that with the exception of 

compound 7, none of the tropolones exerted significant inhibition of the 

normal dermal fibroblasts unlike the pan-HDACi, SAHA. Tropolones also 

arrested the subdiploid phase of the cell cycle, usually viewed as an apoptotic 

index, in Jurkat and HuT-78 cells in a time-dependent manner. Furthermore, 

preliminary assessment of the extrinsic apoptotic pathway via caspase-8 

activation by the tropolones did not show significant overexpression of 

caspase-8 in Jurkat cells when compared to the untreated control. However, 

the tropolones were shown to induce apoptosis via the intrinsic pathway of 

caspase-3/7 activation in Jurkat cells in a time-dependent manner 

In a similar manner to SAHA, compound 2 was able to activate the 

differentiation of perforin in a time-dependent manner in Jurkat cells 

suggesting that tropolones may be able to execute cell death by apoptosis via 

the perforin/granzyme pathway (69-73). Moreover, HDAC inhibitors such as 



www.manaraa.com

211 

 

valproic acid have been shown to improve sensitivity of Jurkat and 

humanhepatoma cells to natural killer (NK) cell-mediated killing (73, 74).  

Furthermore, studies in genetically identical  murine tumor models of 

mammary, renal, prostate, and colorectal carcinomas have shown  robust and 

prolonged eradication of solid tumors using SAHA combined with immune-

stimulating antibodies, CD8(+) cytolytic T lymphocytes (CTL) that used 

perforin as the key immune effector molecule (75). These studies combined 

with the data on perforin differentiation by compound 2 suggest promising 

therapeutic applications and warrant further investigation of tropolones in 

combination with immune-activating antibodies for treatment of both solid 

tumors and hematological malignancies.  

Histone acetylation is considered to be the most studied 

posttranslational modification (24, 51, 76); in addition to histones, HDACs 

modulate over 1700 nonhistone substrates including the structural protein, 

tubulin (77). Hyperacetylation of key lysine residues on histone H4 (H4K12) 

were observed in Jurkat cells and to a lesser extent in HuT-78 cells as a 

result of tropolone treatment (78). Interestingly, tropolone treatments in Jurkat 

and HuT-78 cells did not result in significant modulation of lysine residues on 

acetylated alpha-tubulins (Ac-α-tub-Lys40) typically indicative of HDAC6 

inhibition (28, 68, 79-82). However, selective inhibition of class I HDAC 

enzymes, particularly HDAC8, is also associated with weak tubulin 

modulation (67); conversely, pan-HDACi and HDAC6-selective HDACi show 
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significant tubulin modulation as a result of HDAC6 hyperacetylation (28, 68). 

Hence, this observation supports our biochemical data that shows very poor 

inhibition of HDAC6 by the tropolones and further strengthens our claim on 

the isoform-selective nature of HDAC inhibition by the tropolones. 

B. Distinct need for further evaluation of gene expression and analysis 

of drug-like properties  

Elucidation of specific gene expression in both Jurkat and HuT-78 cells did 

not reveal any significant overexpression of the tumor-suppressor gene, p53, 

or CDKIs such as p15, p21 and p27. It may be possible that the inability of the 

tropolones to inhibit HDAC1 may hinder p21 activation since it has been 

reported that SAHA treatment in multiple myeloma cells resulted in a marked 

decrease in HDAC1 expression and a significant overexpression of p21 (83, 

84). However, a more comprehensive analysis of tropolone-mediated gene 

expression via microarray analysis in normal and mutant Jurkat and/or HuT-78 

cells as possibly in animal models will be required for a more precise 

evaluation of genes that are altered as a result of tropolone treatment (85). 

Moreover, gene expression analysis in mutant hematological cells that are 

deficient of or overexpressed with HDAC2 or HDAC8 may serve as further 

proof of concept for our claim on the isoform-selective nature of HDAC 

inhibition by the tropolones.  
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Elucidation of drug-like properties is an integral constituent of any drug 

discovery project (86).  Preliminary assessment of toxicity in adult human 

dermal fibroblasts (hDF) indicates that selective HDAC inhibition by the 

tropolones may result in reduced toxicity profiles as evidenced by the fact that 

with the exception of compound 7, none of the tropolones showed significant 

inhibition of hDF unlike the pan HDAC inhibitor, SAHA (GI50 = 18.95 µM).  

However, despite the high potencies displayed against HDAC2 and HDAC8 in 

enzyme inhibition studies, the activities of tropolones within cell lines and 

possibly in future in vivo studies may be hindered by poor physicochemical 

properties such as permeability and chemical stability issues (86).  Hence, 

current knowledge on the mechanisms of action of tropolones as HDACi will 

be strengthened by a better knowledge on the biochemical properties of the 

tropolones, particularly metabolism, as well as in vitro, and possibly in vivo, 

studies on pharmacokinetics and toxicity.  

C. Proposed modification of the tropolone scaffold 

Efforts are currently in place to develop a second generation library of 

tropolones using methods described in this dissertation that will potentially 

maintain isoform selectivity in HDAC inhibition while exerting a more robust 

therapeutic application particularly for the treatment of solid tumors and 

hematological malignancies.  The proposed scaffold for second-generation 

tropolones (Figure 1) will now include a linker domain (the alkyl chain) that is 
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presumed to mimic the natural HDAC substrate and occupy the active site 

channel thus allowing for exploration for isozyme selectivity (24, 87). 

 

 

 

 

Figure 1: Proposed scaffold for 2nd generation tropolones 

 

 R groups will either be hydrogen atoms, alkyl groups, or aryl groups. 

The same substitutions will also be evaluated in the alpha and possibly 

gamma positions in order to elucidate SAR.  Moreover, virtually all HDACi 

currently in clinical development for the treatment of cancer share this 

common pharmacophore pattern consisting of: a metal binding domain which 

complexes zinc; a linker domain and a surface domain or cap group, which 

makes contact with the rim of the catalytic pocket (24, 33, 87).  Accordingly, 

the tropolone ring with the alpha-hydroxyl ketone will serve as the metal-

binding domain, the alkyl chain will serve as the linker domain and the 

secondary aryl moiety will serve as the cap group. It is expected that 

modification of the tropolone scaffold may also lead to improvements in 
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pharmacokinetic properties that may improve in vitro potency & possibly in 

vivo efficacy (58).  

D. Conclusions 

Given the high incidence of cancer worldwide and growing interest in 

research on epigenetic alterations, a comprehensive investigation on the 

mechanisms of action of tropolones as HDACi was conducted via biochemical 

and functional studies. As a result of this dissertation research, several 

techniques that are relatively new to the Anderson laboratory have been 

developed for biochemical and functional analysis of HDAC inhibition by the 

tropolone library: 1) Evaluation of HDAC enzymatic activity and inhibition, 2) 

Investigation of antiproliferative effects via cytotoxicity assays and cell cycle 

analyses, 3) Elucidation of the induction and mechanisms of cell death by 

apoptosis, 4) Assessment of specific gene expression. The incorporation of 

these methods in present studies have improved understanding on the 

mechanisms of action of tropolones as isoform-selective HDACi and will also 

guide development of future tropolone libraries.   
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Chapter 11  

Materials and Methods 

A. Expression and purification of HDAC8 

HDAC8 expression and purification was performed essentially as 

described by in reference 1. Briefly, mid-log phase BL21 DE3 E. coli cells were 

induced with one millimolar isopropyl-1-thio-β-D-galactopyranoside (IPTG) (3h, 

225 rpm, 37°C) in LB media.  Harvested bacteria were resuspended in the 

lysis buffer, BugBuster 10X Protein Extraction Reagent (EMD4 Biosciences, 

USA), incubated with DNase I (5 units/mL) and clarified by centrifugation at 

35,000 × g for 1 h. The supernatant was then loaded into a Ni-NTA resin 

column preequilibrated in the wash buffer (50 mM Tris•HCl, pH 8.0/3 mM 

MgCl2/300 mM KCl/20 mM imidazole/5% glycerol/1 mM 2-

mercaptoethanol/PMSF). HDAC8 was eluted with 250 mM imidazole, then 

dialyzed against the final buffer (50 mM Tris•HCl, pH 8.0/50 mM KCl /5% 

glycerol/10 μM ZnCl2/1 mM DTT). The HDAC8 protein (ACA-HDAC8) was 

then loaded onto a G75 26/60 gel filtration column (GE Healthcare Life 

Sciences, USA), equilibrated in the gel filtration buffer (50 mM Tris•HCl pH 

8.0/150 mM KCl/5% glycerol/1 mM DTT) and stored at -80oC.   
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B. HDAC Activity Assays for the elucidation of enzyme kinetic 

parameters 

KM and Vmax values for one class I HDAC enzyme (HDAC8), two class 

IIa HDAC enzymes (HDAC4, HDAC5) and one class IIb HDAC (HDAC6) were 

determined using commercially available human recombinant HDAC enzymes 

(BPS Bioscience, San Diego, CA) and fluorogenic HDAC assay kits (BPS 

Bioscience).  Kinetic parameters for two class I HDAC enzymes (HDAC1, 

HDAC2) were obtained using human recombinant HDAC enzymes (BPS 

Bioscience) and a fluorogenic HDAC assay kit (Active Motif, Carlsbad CA). 

Both fluorogenic assays work by utilizing a short, patented, peptide substrate 

containing an acetylated lysine residue that upon deacetylation by a HDAC 

enzyme results in the production of a fluorescent product with an excitation 

wavelength of 360 nm and an emission wavelength of 460 nm. Assay was 

performed at substrate concentrations of 25-400 µM according to the 

manufacturer’s protocol.  Best-fit values for KM and Vmax  were determined via 

non-linear regression analysis (GraphPad Software, Inc., CA) and compared 

to published HDAC enzyme kinetics data (2, 3). Values for kcat and kcat /KM 

were determined from the KM and Vmax  values obtained for each HDAC 

isozyme using methods described in references 2 and 4.   
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C. HDAC Inhibition Assays for the determination of IC50 and Ki values 

HDAC inhibition assays measured the half maximal inhibitory 

concentration, IC50, for tropolones for or one class I HDAC enzyme (HDAC8), 

two class IIa HDAC enzymes (HDAC4, HDAC5) and one class IIb HDAC 

(HDAC6) using commercially available human recombinant HDAC enzymes 

(BPS Bioscience, San Diego, CA) and fluorogenic HDAC assay kits (BPS 

Bioscience).  IC50 values for two class I HDAC enzymes (HDAC1, HDAC2) 

were obtained using human recombinant HDAC enzymes (BPS Bioscience) 

and a fluorogenic HDAC assay kit (Active Motif, Carlsbad CA). Both 

fluorogenic assays work by utilizing a short, patented, peptide substrate 

containing an acetylated lysine residue that upon deacetylation by a HDAC 

enzyme results in the production of a fluorescent product with an excitation 

wavelength of 360 nm and an emission wavelength of 460 nm. Assay was 

performed in replicates essentially as described in the manufacturer’s protocol.  

The potent hydroxamic acid HDACi, Trichostatin A (TSA), provided in the 

assay kit, served as a control for the assays. DMSO, at the same percentage 

as is present in the compounds, showed no significant inhibition of HDAC 

enzymes. Assay data were analyzed via non-linear regression (GraphPad 

Software, Inc., CA). Best-fit values for IC50 were determined via non-linear 

regression analysis (GraphPad Software, Inc., CA) and compared to published 

IC50 data (2, 3, 5). The IC50 of the tropolones were converted to the inhibition 
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constant, Ki, for each of the inhibitors using the KM value in accordance to 

techniques previously described by Cheng and Prusoff (6).  

D. Mode of binding studies in HDAC8 

The mechanism of action of compound 2 in HDAC8 (BPS Bioscience) 

was determined using four concentrations of  the fluorogenic class IIa HDAC 

substrate (BPS Bioscience; 10 μM, 20 μM, 40 μM and 80 μM) against four 

inhibitor concentrations (0.5 nM, 1 nM, 2 nM, 4 nM). Enzyme parameters were 

analyzed via non-linear regression analysis (GraphPad Prism); the mixed 

model inhibition module on the GraphPad Prism software was used to 

determine the best fit value for the Ki, the alpha value,  and concurrently 

determine the mode of binding of compound 2 in HDAC8 (7, 8). The 

parameter, alpha, (Ki
‘/Ki) is used to determine the degree to which binding of 

an inhibitor changes the affinity of the enzyme for the substrate (7, 8).  

E. Cell culture   

All ten human cell lines were obtained from the American Type Culture 

Collection (ATCC; Manassas, VA) and maintained in a humidified incubator 

(37oC, 5% CO2) using ATCC recommendations and pertinent methods 

required for culturing human solid tumor and hematological cells (9). With the 

exception of HuT-78 and MCF-10A, all cell lines were supplemented with 10% 

fetal bovine serum (FBS; Atlanta Biologicals, Lawrenceville, GA). BXPC-3 and 

Jurkat cells were cultured in RPMI 1640 (ATCC) supplemented with 1% 
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penicillin/streptomycin (PEN-STREP; Mediatech Inc., Manassas, VA) and 1% 

L-Glutamine (L-Glut; Mediatech Inc.). HuT-78 cells were cultured in IMDM 

(ATCC) supplemented with 20 % FBS, 1% PEN-STREP (Mediatech Inc.) and 

1% L-Glut (Mediatech Inc.). HT-29 and HCT116 were cultured in McCoy’s 

media (Life Technologies, Carlsbad CA) supplemented with 1% non-essential 

amino acids (NEAA; Mediatech Inc.) and 1 % PEN-STREP (Mediatech Inc.). 

MCF-7 cells were maintained in DMEM/F12 supplemented with 1% L-Glut and 

1% PEN-STREP. MCF-10A cells were cultured with the MEGM kit (Lonza 

Biologics, Basel, Switzerland) supplemented with cholera toxins (Sigma 

Aldrich).  MCF-10A cells were grown with the MEGM kit (Lonza, Switzerland) 

supplemented with 50 µg/mL cholera toxin (Sigma Aldrich, St. Louis, MO). U87 

cells were cultured in MEM supplemented with 10% FBS. A549 were cultured 

in F-12 media supplemented with 10% FBS. Normal human adult dermal 

fibroblasts (hDF) were maintained in DMEM supplemented with 10% FBS. 

Vorinostat (SAHA), (Z)-4-hydroxytamoxifen, and wortmannin were obtained 

from Sigma Aldrich. 

F. Cell viability assay 

Confluent Jurkat and HuT-78 cells were seeded in triplicate at a density 

of 5 x104 cells/well in 96-well culture plates (Corning Inc., Corning, NY).  MCF-

7 and MCF-10A cell lines were seeded in triplicate at a density of 1 x 104 

cells/well in 96-well culture plates (Corning Inc.). HCT116, HT-29, BXPC-3, 
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U87, A549, and hDF cells were seeded in triplicate at a density of 5 x 103 

cells/well in 96-well culture plates (Corning Inc.). Cells were treated 

accordingly at varying concentrations (1 μM-100 μM) of a tropolone, a 

furanosteroid, SAHA or wortmannin. DMSO served as a vehicle control. After 

a 72h exposure, cytotoxicity was evaluated using the Cell Titer 96 Aqueous 

One kit (Promega, Madison, WI) according to the instructions of the 

manufacturer. Formazan content was determined by measuring the 

absorbance at 490 nm on an Infinite M200 microplate reader (Tecan Group 

Ltd., Switzerland). Assay data were analyzed via nonlinear regression analysis 

(GraphPad Software, Inc.) and best fit values for growth inhibition was 

compared to published data for the experimental controls (SAHA or 

wortmannin) when possible (10-17).  

G. Analysis of histone and tubulin modification 

Approximately 1 x106 logarithmic-phase Jurkat and HuT-78 cells were 

treated with either a tropolone or SAHA for the applicable treatment period in 

6-well culture plates (Corning Inc.). Control wells contained no HDACi. After 

pertinent exposure, cells were harvested using applicable methods described 

in reference 9. Harvested cells were chilled on ice for 10 min, washed with 

phosphate-buffered saline (PBS) and fixed with 4 % (w/v) paraformaldehyde 

(PFA) for 20 min. Fixed cells were resuspended in 5 % BSA/PBS and stored 
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overnight at 4oC. Cells were permeabilized with PBS plus 0.5 % (v/v) Triton-X-

100, washed and blocked with 10 % normal goat serum. 

Cells were then incubated with either H3K9Ac, H3K23Ac, H4K12Ac or 

Ac-α-Tub-K40 using primary antibodies purchased from Cell Signaling 

Technology  ( Beverly, MA) at a 1:100 dilution in 5 % BSA/PBS and a  

fluorescein isothiocyanate (FITC) conjugated secondary antibody 

(Millipore,Billerica, MA) at a 1:1000 dilution in 5 % BSA/PBS. Flow cytometric 

analysis has been shown to be a reliable method for evaluating epigenetic 

alterations including histone acetylation (18-20). Hence, following staining, 

cells were evaluated for fluorescence in-house at the at the UConn Flow 

Cytometry and Confocal Microscopy (FCCM) Facility using the Becton 

Dickinson (BD) FACSCalibur Flow Cytometer (San Jose, CA). Values for the 

geometric mean fluorescence intensities (GMFI), equivalent to the median cell 

population response, were obtained via analysis on the FlowJo Workstation 

(Treestar Inc., Ashland OR; 21-23).  

H. Cell cycle Analyses 

Approximately 1 x 106 logarithmic-phase HCT116, BXPC3, Jurkat and 

HuT-78 cells were treated with either a tropolone or SAHA for the relevant time 

period in 6-well culture plates (Corning Inc.).  Control wells contained no 

HDACi. After pertinent exposure, cells were harvested using applicable 

methods described in reference 9. Harvested cells were washed with cold 
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phosphate-buffered saline (PBS). Cells were fixed with ice-cold 70 % ethanol, 

incubated at 4oC for several hours and incubated overnight at -20oC. Fixed 

cells were stained with 50 μg/mL of propidium iodide (Life Technologies) and 

200 μg/mL of DNA-free RNAse A (Sigma Aldrich) and incubated in the dark for 

several minutes (24-26).  Following staining, cells were analyzed for the 

distribution of DNA content in-house at the UConn FCCM Facility using the BD 

FACSCalibur Flow Cytometer. Percentages of cell populations in each cell 

cycle phase were calculated based on DNA content histograms with the aid of 

the FlowJo Workstation. Assay results were compared to published reports on 

cell cycle analysis for the experimental control, SAHA when possible (27-29).  

I. Evaluation of specific gene expression 

Approximately 1 x 106 logarithmic-phase Jurkat and/or HuT-78 cells 

were treated with either a tropolone or vorinostat for either 12h or 24h in 6-well 

culture plates (Corning Inc.). Control wells contained no HDACi. After pertinent 

exposure, cells were harvested using applicable methods described in 

reference 9. Harvested cells were chilled on ice for 10 min, washed with PBS 

and fixed with 4 % (w/v) paraformaldehyde (PFA) for 20 min. Fixed cells were 

resuspended in 5 % BSA/PBS and stored overnight at 4oC. Cells were 

permeabilized with PBS plus 0.5 % (v/v) Triton-X-100, washed and blocked 

with 10 % normal goat serum. Cells were then incubated with either perforin, 

p15, p21, p27, or p53  using primary antibodies purchased from Cell Signaling 
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Technology ( Beverly, MA) at a 1:100 dilution in 5 % BSA/PBS and a FITC 

conjugated secondary antibody (Millipore,Billerica, MA) at a 1:1000 dilution in 

5 % BSA/PBS. Following staining, cells were evaluated for fluorescence in-

house at the UConn FCCM Facility using a BD FACSCalibur flow cytometer 

(21-23). Values for the geometric mean fluorescence intensities (GMFI), 

equivalent to the median cell population, were obtained via analysis on the 

FlowJo Workstation. Assay results were compared to published data when 

possible (30-32).  

J. Reverse-transcription PCR and quantitative real-time PCR analysis 

A quantitative real-time polymerase chain reaction (qRT-PCR) analysis 

was further used to validate p21 expression in Jurkat cells after a 24h 

treatment with compound 2 and SAHA (33-36). Briefly, 5 x106 treated Jurkat 

cells were harvested and washed with ice-cold PBS. RNA was isolated using 

the Trizol reagent (Life Technologies) according to the instructions of the 

manufacturer. Two micrograms of extracted RNA was subjected to reverse 

transcription using the Applied Biosystems High Capacity cDNA kit according 

to the manufacturer’s instructions. Following the PCR reaction, Taqman gene 

expression systems (Applied Biosystems) for p21, HDAC2, vitamin D receptor 

(VDR) and beta-actin were prepared and added in triplicate to optical 96-well 

micro-titer plates (Applied Bioystems) containing one microliter of cDNA 

according to the instructions of the manufacturer. All cDNA samples were 
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synthesized in parallel and qRT-PCR was performed in triplicate on an Applied 

Biosystem’s 7500 Fast Real-Time PCR system and software. Relative mRNA 

expression for p21, VDR and HDAC2 were normalized to β-actin levels.  

K. Evaluation of induction of apoptosis 
 

Approximately 1 x106 logarithmic-phase Jurkat and HuT-78 cells were 

treated with either a tropolone or SAHA for the pertinent time period in 6-well 

culture plates (Corning Inc.). Approximately 5 x105 MCF-7 cells were treated 

alone with either compound 2 or SAHA and/or in combination with (Z)-4-

Hydroxytamoxifen, the active metabolite of the antiestrogen tamoxifen in 6-well 

culture plates (Corning Inc.) for 48h (37). Control wells contained no HDACi or 

4-OH-tamoxifen. After exposure, cells were harvested using relevant 

technique for each cell line (9). Harvested cells were washed with cold PBS, 

and resuspended in Annexin-binding buffer [10 mM HEPES, 140 mM NaCl 

and 2.5 mM CaCl2, pH 7.4]. Cells were stained with Annexin V conjugated with 

a fluorescein molecule (Life Technologies) according to the instructions of the 

manufacturer. Propidium iodide (PI; Life Technologies) was also added to the 

cell suspension as a dead cell indicator. Following staining, cells were 

analyzed for fluorescence in-house at the UConn FCCM Facility using a BD 

FACSCalibur flow cytometer (24, 33, 38, 39). Populations of cells were sorted 

with the aid of the FlowJo Workstation as follows: live cells [Annexin V (-), PI (-

)]; early apoptotic cells [Annexin V (+), PI (-)]; late apoptotic/necrotic cells 
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[Annexin V (+), PI (+)]. Assay data were compared to published reports for the 

experimental control, SAHA when possible (37, 40).   

L. Evaluation of Caspase-8 activation 

Approximately 1 x106  logarithmic phase Jurkat cells were treated with 

either a tropolone or SAHA for 24h in 6-well culture plates (Corning Inc.). 

Untreated wells served as negative controls for the assay. Cells were 

harvested, washed with cold PBS and evaluated for caspase-8 activation via 

FACS analysis with the aid of a fluorescent inhibitor of caspases (FLICA) 

reagent (Vybrant FAM Caspase-8 assay kit, Life Technologies) according to 

the instructions of the manufacturer (41). Assay data were collected at the 

UConn FCCM using a FACSCalibur and data were analyzed on the FlowJo 

Workstation.  

M. Caspase-3/7 Analysis 

Approximately 2 x104 logarithmic phase Jurkat cells were treated in 

triplicate in 96-well culture plates with 10 μM of either tropolone or SAHA for 

the applicable time period. Untreated wells served as experimental controls for 

the assay. Following treatment, Caspase-3/7 activity was measured in Jurkat 

cells using the luminescent Caspase-Glo 3/7 assay (Promega) according to 

the manufacturer’s instructions (42-44). The luminescent signal generated 

from the assay is correlated with caspase-3/7 activity and luminescence was 

measured using a Veritas Microplate reader (Promega).  
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N. PI3K enzyme activity assays 

Key enzyme kinetic parameters (KM, Vmax, kcat, kcat /KM ) for the class Ia 

PI3K enzyme, p110α, was determined using a commercially available human 

recombinant enzyme (Sigma Aldrich) phosphatidyl inositol substrate (PI; 

Sigma Aldrich), and the luminescent ADP-Glo Kinase assay kit (Promega). 

Assay was performed in a black, flat bottom 96-well plate essentially as 

described by the manufacturer’s protocol. Briefly, twenty five microliters of a 

reaction mixture containing 50 ng of PI3K enzyme, 25-400 μM of PI and 10 μM 

ATP (provided in the assay kit) was incubated for 1 hour at 37oC. The reaction 

mixture was cooled and incubated sequentially at room temperature with the 

ADP-Glo and Kinase Detection reagents in order to simultaneously convert 

ADP to ATP and allow the newly synthesized ATP to be measured using a 

luciferase/luciferin reaction. The luminescent signal generated from the assay 

is correlated with kinase activity and luminescence was measured using a 

Veritas Microplate reader (Promega). Assay data were subjected to non-linear 

regression analysis (GraphPad Software); kcat /KM  values were calculated from 

best fit values for KM and Vmax using methods described in reference 4.   

O. PI3K enzyme inhibition assays 

Enzyme inhibition assays were performed using a commercially 

available human recombinant Class I PI3K enzyme (p110α/p85α, Sigma 

Aldrich, St. Louis, MO), phosphatidyl inositol substrate (PI; Sigma Aldrich), and 
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the luminescent ADP-Glo Kinase assay kit (Promega, Fitchburg, WI). 

Wortmannin served as an experimental control.  Assay was performed in 

replicates in a black, flat bottom 96-well plate essentially as described by the 

manufacturer’s protocol. Briefly, twenty five microliters of a reaction mixture 

containing 0.5 nM to 25,000 nM concentrations of the compounds, 50 ng of 

PI3K enzyme, 50 μM of PI and 10 μM ATP (provided in the assay kit) was 

incubated for 1 hour at 37oC. The reaction mixture was cooled and incubated 

sequentially at room temperature with the ADP-Glo and Kinase Detection 

reagents in order to simultaneously convert ADP to ATP and allow the newly 

synthesized ATP to be measured using a luciferase/luciferin reaction. The 

luminescent signal generated from the assay is correlated with kinase activity 

and luminescence was measured using a Veritas Microplate reader 

(Promega). Assay data were subjected to non-linear regression analysis 

(GraphPad Software). Best fit values for IC50 values have been reported (16); 

IC50 values were also converted to Ki values using methods described in 

reference 6.    
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Appendix 

 

1. Standard error values for elucidation of KM   and  Vmax   values (Chapter 3, Table 2) 

Kinetic 

Parameter  

Class I HDAC  Class IIa HDAC  Class IIb 

HDAC  

 

HDAC1  

 

HDAC2  HDAC8  HDAC4  HDAC5 

 

HDAC6  

KM  (μM) 7.97 7.07 6.61 17.35 72.88  4.91 

Vmax (μM) 33.94 35.56 184.5 1130.00 242.4 340.60 

 

2. Graphs for Enzyme Kinetics (Chapter 3) 
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3. Standard error values for HDAC2 inhibition (Chapter 3, 
Figure 5a & 5b) 

Single time-point analysis Comprehensive analysis 

1.40 1.57 

HDAC6 Kinetics

[Substrate]

E
n

z
y
m

e
 A

c
ti

v
it

y

0 20 40 60 80 100
0

1000

2000

3000

4000



www.manaraa.com

243 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Standard error values for IC50 analysis of HDAC2 and 
HDAC8 (Chapter 3, Table 3)  

Compound HDAC2 HDAC8 

 
TSA 

1.40 1.58 

 
1 

1.41 2.78 

 
2 

1.65 3.24 

 
3 

1.66 2.27 

 
4 

2.07 3.03 

 
5 

2.75 2.74 

 
6 

2.03 3.27 

 
7 

1.60 4.11 

 
8 

1.58 2.34 

 
9 

1.53 3.91 

 
10 

1.39 2.81 

 
11 

1.73 2.96 

 
12 

1.38 3.41 

 
13 

1.68 2.40 

 
14 

2.17 2.26 
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5. Standard error values for elucidation of calculated 
Ki and Alpha values for Compound 2 (Chapter 3, 
Figure 6) 

Ki Alpha 

0.52 6.46 

 

6. Standard error values for determination of GI50 values for solid tumor cell lines 
 (Chapter 4, Table 1)  

Compound HCT116 HT-29 BXPC-3 A549 U87 MCF-7 MCF-10A 

SAHA 1.19 1.18 1.19 1.49 1.27 1.28 1.20 

1 1.24 1.00 1.75 1.00 1.66 1.24 1.23 

2 1.16 1.46 1.32 1.47 1.44 1.24 1.16 

3 1.25 1.42 1.27 1.62 1.00 1.78 1.21 

4 1.26 1.26 1.20 1.30 1.65 1.49 1.19 

5 1.22 1.22 1.39 1.44 1.00 1.48 1.13 

6 1.19 1.19 1.36 1.45 1.69 1.17 1.27 

7 1.21 1.41 1.29 1.40 1.27 1.38 1.37 

8 1.28 1.28 1.42 1.62 1.00 1.51 1.13 

9 1.34 1.34 1.67 3.03 1.00 1.00 1.22 

10 1.19 1.15 1.27 1.36 1.00 1.46 1.40 

11 2.23 1.51 1.00 1.00 2.06 1.00 1.19 

12 1.19 1.40 1.39 1.23 2.54 2.27 1.19 

13 1.16 1.31 1.52 1.29 1.78 1.16 1.29 

14 1.29 1.29 1.60 1.30 1.91 1.45 1.20 
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7. Standard error values for determination of GI50 values for  

Jurkat, HuT-78 and hDF cells (Chapter 4, Table 2). 

Compound Jurkat HuT-78 hDF 

SAHA 1.35 1.16 1.35 

1 1.21 1.22 5.07 

2 1.25 1.17 1.38 

3 1.39 1.23 1.22 

4 1.48 1.26 3.91 

5 1.35 1.25 1.00 

6 1.23 1.16 1.58 

7 1.44 1.20 1.32 

8 1.46 1.31 1.00 

9 1.21 1.29 1.63 

10 1.34 1.19 1.00 

11 7.63 1.38 1.00 

12 1.42 1.19 1.76 

13 1.86 1.24 1.37 

14 1.40 1.18 1.69 
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8. Modulation of histone H4 antibodies in Jurkat cells after a 12h treatment 
with HDACi (Chapter 5. Table 1). Note that histograms for the HDACi 

treatments represent the untreated control (red) superimposed with the 
HDACi treatment (blue) for comparative analysis. 

 
 

a)  Experimental/compensation controls [unlabeled cells (red); 2o antibody 
(green); untreated control (blue)]. 

 

 

 

 

 

 

 

b) SAHA treatment    c)  Compound 2 
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d) Compound 5     e) Compound 7 

 

 

 

f) Compound 9     g) Compound 10 
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       h)       Compound 11          i)  Compound 12 

 

 

k) Compound 14 
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9. Comparative analysis of unlabeled cells (green), secondary (2o) antibody 
treatment only (blue) and the untreated control (primary (1o) + 2o antibody; 
red) for evaluation of H4K12Ac modulation in Jurkat cells treated with 10 

µM HDACi for 12h (Chapter 5, Table 2). 
 

 

 

 

 

 

 

 

 

Modulation of histone H4K12Ac antibodies in Jurkat cells after a 4h treatment 
with HDACi (Chapter 5). Note: Untreated control for pertinent HDACi treatments 

represented in red and HDACi represented in blue on the corresponding 
histograms. 

 
 
a)  Experimental/compensation controls [unlabeled cells (green); 2o antibody 

(blue); untreated control (red)]. 
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b) 10 µM SAHA      c) 25 µM Compound 2 
 
 

  
 
 
 
 
 
 
d) 25 µM Compound 5     e) 25 µM Compound 7 
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f) 25 µM Compound 9    g) 25 µM Compound 10 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
h) 25 µM Compound 11   i) 25 µM Compound 13 
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j) 25 µM Compound 14 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10. Modulation of histone H4K12Ac antibodies in Jurkat cells after a 12h 
treatment with 25 µM tropolones (Chapter 5, Table 3). Note: Untreated 
control for pertinent tropolone treatments represented in red and HDACi 

represented in blue on the corresponding histograms. 
 
 
a)  Experimental/compensation controls [unlabeled cells (red); 2o antibody 

(blue); untreated control (green)]. 
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b) SAHA       c) Compound 2 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
d) Compound 5      e) Compound 7 
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f) Compound 9      g) Compound 10 
 
 

  
 
 
 
 
 
 
h) Compound 11     i) Compound 13 
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j) Compound 14 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

11. Modulation of histone H3K9Ac antibodies in Jurkat cells after a 12h 
treatment with 10 µM HDACi (Chapter 5, Table 4). Note: Untreated control 
for pertinent HDACi treatments represented in red and HDACi represented 

in blue on the corresponding histograms. 
 

a)  Experimental/compensation controls [2o antibody (blue); untreated control 
(red)]. 
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b)  SAHA       c)  Compound 2 

  

 

d)  Compound 5       e) Compound 7 
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f) Compound 9      g)  Compound 10 

  

 

h) Compound 11    i) Compound 13 
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j) Compound 14 

 

 

 

 

 
 
 
 
 
 
 
 
 

12. Modulation of histone H3K23Ac antibodies in Jurkat cells after a 12h 
treatment with 10 µM HDACi (Chapter 5, Table 5).  Note: Untreated 
control for pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 
a) Experimental/compensation controls [unlabeled cells (green); 2o antibody 

(blue); untreated control (red)]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

259 

 

b) SAHA       c) Compound 2 

 
 
 
d) Compound 5     e) Compound 7 
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f) Compound 10    g) Compound 11 
 

 
 
 
 
 
h) Compound 13    i) Compound 14 
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13. Modulation of histone H4K12Ac antibodies in HuT-78 cells after a 12h 

treatment with 10 µM HDACi (Chapter 5, Table 6). Note: Untreated control 
for pertinent HDACi treatments represented in red and HDACi represented 
in blue on the corresponding histograms. 

 
a) Experimental/compensation controls [unlabeled cells (red); 2o antibody 

(blue); untreated control (green)]. 
  

 

 

 

 

 

 

 

b)  SAHA       c) Compound 2 
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d) Compound 5      e) Compound 7  

 

 

 

  

 

 

 

 

 

 

f) Compound 9      g) Compound 10 
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h) Compound 11     i) Compound 13 

 

 

  

 

 

 

 

 

 

 

 

j) Compound 14 

 

 

 

 

 

 

 

 

 



www.manaraa.com

264 

 

 
14. Modulation of histone H3K9Ac antibodies in HuT-78 cells after a 12h 

treatment with 10 µM HDACi (Chapter 5, Table 6). Note: Untreated control 
for pertinent HDACi treatments represented in red and HDACi represented 
in blue on the corresponding histograms. 

 
a) Experimental/compensation controls [unlabeled cells (green); 2o antibody 

(blue); untreated control (red)]. 
 

 

 

 

 

 

 

 

 

b) SAHA       c) Compound 2 
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d) Compound 5      e) Compound 7 

  

 

 

f) Compound 9      g) Compound 10 
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h) Compound 11     i) Compound 13 

  

 

  

 

j) Compound 14 
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15. Modulation of histone H3K23Ac antibodies in HuT-78 cells after a 24h 
treatment with 10 µM HDACi (Chapter 5, Table 7).  Note: Untreated 
control for pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 
 

a)  Experimental/compensation controls [unlabeled cells (green); 2o antibody 
(blue); untreated control (red)]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) SAHA      c) Compound 2 
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d) Compound 3      e) Compound 7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
f) Compound 10      g) Compound 
11 
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h) Compound 12     i) Compound 13 
 
 
 

 
 
 

j) Compound 14 
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16. Modulation of tubulin (Ac-α-tub-K40) antibodies in Jurkat cells after a 12h 

treatment with 10 µM HDACi (Chapter 5, Table 8).  Note: Untreated 
control for pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 
 

a)  Experimental/compensation controls [unlabeled cells (green); 2o antibody 
(blue); untreated control (red)]. 

 
 

 

 

 

 

 

 

 

b) SAHA       c) Compound 2 
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d) Compound 5    e) Compound 7 

 

     

f) Compound 9     g) Compound 10 
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h) Compound 11     i) Compound 13  

 

  

 

 

 

j) Compound 14 
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17. Modulation of tubulin (Ac-α-tub-K40) antibodies in HuT-78 cells after a 12h 
treatment with 10 µM HDACi (Chapter 5, Table 8). Note: Untreated control 
for pertinent HDACi treatments represented in red and HDACi represented 
in blue on the corresponding histograms. 
 

a)  Experimental/compensation controls [unlabeled cells (green); 2o antibody 
(blue); untreated control (red)]. 

 

 

 

 

 

 

 

 

 

b) SAHA      c) Compound 2 
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d) Compound 7      e)  Compound 9 

 

 

 

 

 

 

 

 

 

 

 

f) Compound 10     g) Compound 11 
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h) Compound 13    i) Compound 14 
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18. Analysis of Cell Cycle Progression in HCT116 cells after a 24 

treatment (Chapter 6, Table 1) 

a. Control      b.    10 µM SAHA 

 

 

 

 

 

 

 

 

 

c. 10 µM Compound 2    d.   50 µM Compound 2 
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e. 10 µM Compound 3    f.    50 µM Compound 3 

                    

 

g. 10 µM Compound 7   h. 50 µM Compound 7 
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i. 10 µM Compound 12    j.    50 µM Compound 12 

                  

 

k. 10 µM Compound 13    l.      50 µM Compound 13 
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19. Analysis of Cell Cycle Progression in BXPC3 cells after a 12h 

treatment (Chapter 6, Table 2) 

a. Control     b.   10 µM SAHA 

            

c.       10 µM Compound 2                                          d.     10 µM Compound 3 
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e. 10 µM Compound 5                      f.   10 µM Compound 7 

                       

 

g.       10 µM Compound 9       h.   10 µM Compound 10 
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i. 10 µM Compound 11    j.    10 µM Compound 12 

                 

 

k. 10 µM Compound 13    l.   10 µM Compound 14 
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20. Time Dependent Analysis of Cell Cycle Progression in Jurkat Cells 
(Chapter 6, Tables 4 & 5) 

24h  

Control     b.    10 µM SAHA 

 

 

c.     10 µM Compound 2   d.       10 µM Compound 7 
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e. 10 µM Compound 11    f.    10 µM Compound 13 

 

36h 

g.        Control      h. 10 µM SAHA 
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i.  10 µM Compound 2    j.   10 µM Compound 7 

 

k.   10 µM Compound 11    l.   10 µM Compound 13 
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21. Analysis of Cell Cycle Progression in Jurkat cells after a 24h treatment 
with 25 µM HDACi (Chapter 6, Table 6) 

 

a. Control     b. 25 µM Compound 2 

  

c. 25 µM Compound 5    d. 25 µM Compound 7 
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e. 25 µM Compound 9    f. 25 µM Compound 10 

                                                

g. 25 µM Compound 11   h. 25 µM Compound 13 
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i. 25 µM Compound 14 

 

 

 

 

 

 

22. Time-dependent analysis of cell cycle progression in HuT-78 cells  
(Chapter 6, Tables 7-9) 

 
12h 

a. Control     b.  5 µM SAHA 
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 c. 10 µM Compound 2    d. 10 µM Compound 7 

 

 

e. 10 µM Compound 11   f. 10 µM Compound 13 
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24h 

g.    Control         h.    5 µM SAHA 

     

i. 10 µM Compound 2    j. 10 µM Compound 7 
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k. 10 µM Compound 11   l.   10 µM Compound 13 

    

36h 

m. Control     n.  5 µM SAHA 
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o. 10 µM Compound 2    p.      10 µM Compound 7 

     

 

q. 10 µM Compound 11   r. 10 µM Compound 13 
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23. Evaluation of p53 expression in Jurkat cells after a 12h treatment with 
10 µM HDACi (Chapter 7, Table 1). Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 
a) Experimental/compensation controls [unlabeled cells (red); 2o antibody 

(blue); untreated control (green)]. 
 
 

 

 

 

 

 

 

 

b)  SAHA       c) Compound 2 
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d) Compound 5      e) Compound 7 

 

 

 

 

 

 

 

 

 

 

 

f) Compound 9      g) Compound 10 
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h) Compound 11     i) Compound 13 

 

 

 

 

 

 

 

 

 

 

 

j)  Compound 14 
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24. Evaluation of p15 expression in Jurkat cells after a 24h treatment with 
10 µM HDACi (Chapter 7, Table 2). Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 

a) Experimental/compensation controls [2o antibody (blue) and untreated 
control (red)]. 

 

 

 

 

 

 

 

 

b)  SAHA        c)  Compound 2 
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d) Compound 5       e) Compound 7 

  

 

 

 

 

 

 

 

 

 

 

f) Compound 9      g) Compound 10 
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h) Compound 11     i) Compound 13 
 
 

  
 
 
 
 
 
 
 
 
 

j) Compound 14 
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25. Evaluation of p15 expression in Jurkat cells after a 24h treatment with 
50 µM HDACi (Chapter 7, Table 2).  Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 

a) Experimental/compensation controls [2o antibody (blue) and untreated 
control (red)]. 

 

 

 

 

 

 

 
 
 
 
 
b) Compound 2      c) Compound 3 
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d) Compound 7      e) Compound 10 
 
 

  
 
 
 
 
 
f) Compound 11     g) Compound 12 
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h) Compound 13     i) Compound 14 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

26. Evaluation of p15 expression in HuT-78 cells after a 24h treatment with 
10 µM HDACi (Chapter 7, Table 2).  Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 

a) Experimental/compensation controls [2o antibody (blue) and untreated 
control (red)]. 
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b) SAHA       c) Compound 2 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
d) Compound 3      e) Compound 5 
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f) Compound 7      g) Compound 9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
h) Compound 10     i) Compound 12 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



www.manaraa.com

303 

 

j) Compound 13     k) Compound 14 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

27. Evaluation of p15 expression in HuT-78 cells after a 24h treatment with 
50 µM HDACi (Chapter 7, Table 2). Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 

a) Experimental/compensation controls [2o antibody (blue) and untreated 
control (red)]. 
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b) Compound 2       c)  Compound 3 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
d) Compound 7      e) Compound 10 
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f) Compound 11     g) Compound 12 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
h) Compound 13     i) Compound 14 
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28. Evaluation of p27 expression in Jurkat cells after a 24h treatment with 
HDACi (Chapter 7, Table 3).  Note: Untreated control for pertinent 
HDACi treatments represented in red and HDACi represented in blue 
on the corresponding histograms. 

 
a) Experimental/compensation controls [Unlabeled cells (red); 2o antibody 

(blue) and untreated control (green)]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) SAHA      c) Compound 2 
 
 

  
 



www.manaraa.com

307 

 

 
 
 
d) Compound 5      e) Compound 7 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
f) Compound 9      g) Compound 10 
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h) Compound 11     i) Compound 13 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

j) Compound 14 
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29. Evaluation of p27 expression in Jurkat cells after a 24h treatment with 
HDACi (Chapter 7, Table 4). Note: Untreated control for pertinent 
HDACi treatments represented in red and HDACi represented in blue 
on the corresponding histograms. 

 

a) Experimental/compensation controls [2o antibody (blue) and untreated 
control (red)]. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 10 µM SAHA      c) 10 µM Compound 2 
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d) 50 µM Compound 2     e) 10 µM Compound 7 

 
 
 
 
 
 
 
 
 

e) 10 µM Compound 7 
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30. Evaluation of p27 expression in HuT-78 cells after a 12h treatment with 
10 µM HDACi (Chapter 7, Table 4).  Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 

a) Experimental/compensation controls [2o antibody (blue); untreated control 
(red)] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Compound 2      c) Compound 5 
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d) Compound 7      e) Compound 9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
f) Compound 10     g) Compound 11 
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h) Compound 13     i) Compound 14 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

31. Evaluation of p21 expression in Jurkat cells after a 12h treatment with 
10 µM HDACi (Chapter 7, Table 5).  Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 

a) Experimental/compensation controls [unlabeled cells (red); 2o antibody 
(blue); untreated control (green)]. 
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b)  SAHA       c) Compound 2 

 

 

 

d) Compound 5      e) Compound 7 
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f) Compound 9      g) Compound 10 

 

 

 

 

 

 

 

 

 

 

h) Compound 11     i) Compound 13 
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j) Compound 14 

 

 

 

 

 

 

 

 

32. Comparative analysis of secondary (2o) antibody treatment only (blue) 
and the untreated control (primary (1o) + 2o antibody; red) for 
evaluation of p21 expression in Jurkat cells after a 24h treatment with 
10 µM HDACi (Chapter 7, Table 6). 
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33. Evaluation of p21 expression in Jurkat cells after a 24h treatment with 
50 µM HDACi (Chapter 7, Table 6). Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 

a) Experimental/compensation controls [2o antibody (blue); untreated control 
(red)]. 

 

 

 

 

 

 

 

 

 

b) Compound 2       c) Compound 3 
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d) Compound 7 

 

 

 

 

 

 

 

 

 

 

 

e) Compound 10     f) Compound11 
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g) Compound 12 

 

 

 

 

 

 

 

 

 

h) Compound 13     i) Compound 14 
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34. Evaluation of p21 expression in HuT-78 cells after a 24h treatment with 
10 µM HDACi (Chapter 7, Table 6). Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 

a) Experimental/compensation controls [ 2o antibody (blue) and untreated 
control (red)]. 

 

 

 

 

 

 

 

b) SAHA        c) Compound 2 
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d) Compound 5      e) Compound 7 

 

 

 

 

 

 

 

 

 

 

 

f) Compound 9      g) Compound 10 
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h) Compound 11     i) Compound 13 

 

 

 

 

 

 

 

 

 

 

 

j) Compound 14 
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35. Evaluation of p21 expression in HuT-78 cells after a 24h treatment with 
50 µM HDACi (Chapter 7, Table 6). Note: Untreated control for 
pertinent HDACi treatments represented in red and HDACi 
represented in blue on the corresponding histograms. 

 

a) Experimental/compensation controls [ 2o antibody (blue) and untreated 
control (red)]. 

 

 

 

 

 

 

 

 

 

b) Compound 2       c) Compound 3 
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d) Compound 7      e) Compound 10 

 

 

 

 

 

 

 

 

 

 

f) Compound 11     g) Compound 12 
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h) Compound 13     i) Compound 14 

 

 

 

 

 

 

36. Elucidation of standard error values for gene expression 

analyses (Chapter 7, Table 7).  

 HDAC2 p21 VDR 

Compound 2  0.16  0.01   0.04  

SAHA 0.11  36.74   8.59  

 
 
 
 
 
 
 
 
 
 



www.manaraa.com

326 

 

37. Time-dependent analysis of the induction of apoptosis in Jurkat cells 
(Chapter 8, Table 2): y axis represents PI response whereas x axis 
represents Annexin V (AV) response. Quadrant 1 (bottom left) 
represents intact (live) cells (AV-, PI-); Quadrant 2 (bottom right) 
represents early apoptotic cells (AV+, PI-); Quadrant 3 (top right) 
represents late apoptotic/necrotic cells ((AV+, PI+). 

 
6h 

a)  Control       b)  10 µM SAHA 

  

  

 

 

 

 

 

 

c)  10 µM Compound 2 
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12h 

a)  Control      b)  10 µM SAHA 

 

 

 

c)  10 µM Compound 2 
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24h 

a)  Control      b)  10 µM SAHA 

 

c)  10 µM Compound 2 
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48h 

a)  Control        b)  10 µM SAHA 

 

c)  10 µM Compound 2 
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38. Time-dependent analysis of the induction of apoptosis in HuT-78 cells 
(Chapter 8, Table 3): y axis represents PI response whereas x axis 
represents Annexin V (AV) response. Quadrant 1 (bottom left) 
represents intact (live) cells (AV-, PI-); Quadrant 2 (bottom right) 
represents early apoptotic cells (AV+, PI-); Quadrant 3 (top right) 
represents late apoptotic/necrotic cells ((AV+, PI+). 

12h 

a)  Control     b)  10 µM SAHA 

 

c)  10 µM Compound 2     d)  10 µM Compound 7 
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e)  Compound 10    f)  Compound 11 

 

 

20h 

a)  Control       b)  10 µM SAHA 
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c)  10 µM Compound 2    d)  10 µM Compound 7 

 

 

 

e)   10 µM Compound 10     f)    10 µM Compound 11 
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39. Standard deviation values for Caspase-3/7 analysis in Jurkat cells 
(Chapter 8, Tables 5 & 6) 

Treatment 6h 12h 24h 48h 

Control 
10002.74 7003.63 31846.96 4710.453 

SAHA 
7939.778 8869.66 20509.97 10357.53 

Compound 2 
11860.49 6312.14 5292.832 7390.019 

Compound 7 
21813.73 10670.77 8117.586 6650.594 
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40. Comparative analysis of unlabeled cells (green), secondary (2o) 
antibody treatment only (blue) and the untreated control (primary (1o) + 
2o antibody; red) for evaluation of perforin differentiation in Jurkat cells 
(Chapter 8, Table 4).   

a) 6h analysis      b) 24h analysis 

 

 

 

 

 

 

 

c)  48h analysis 
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41. Standard error values for elucidation of key enzyme parameters 
for the class I PI3K enzyme, p110α and the PI substrate 
(Chapter 9, Table 1).  

 

 

p110α 

KM  (μM) 

 

Vmax (μM) 

        1.93         90.94 
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